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Abstract

Efficient feedback control algorithms based on optimal and robust control theories
have been formulated and tested in direct numerical simulations of turbulent channel
flow. The optimization technique used is based solely on the equations governing the
fluid flow and variations of a mathematical statement of the control objective, without
the heuristic procedures normally used to determine effective flow control algorithms.
The control algorithms tested are shown to be extremely effective, and a host of new
ideas for the determination of simple, implementable, effective control rules for turbulent
flows have been proposed and are currently still under investigation.

The problem of transition control via optimal and robust techniques has also been
studied to draw parallels between the linear and nonlinear theories on problems of signif-
icant interest in fluid mechanics. Results on this problem have also been quite good and
clearly demonstrate how the control theories are related. With this insight, an important
extension of the concepts of robust control theory to nonlinear problems has been made.

Accomplishments

As a linear “warm-up” project, optimal and robust control techniques were used to
effectively control small, two-dimensional, linearly unstable perturbations to a laminar
plane channel flow at Re = 10,000. The outcome was control rules based on wall-
information only which were highly effective at stabilizing the flow system, and is dis-
cussed in Part A: Optimal and robust control of transition.

The application of control theory to the nonlinear problem of turbulence is, of course, a
much greater challenge. The model problem we consider is turbulent flow in a plane chan-
nel with blowing and suction distributed over the walls (as an idealization of boundary
forcing by discrete MEMS actuators), as illustrated in figure 1. In the case of nonlinear
phenomena such as turbulence, iterative approaches must be used based on local lin-
earizations of the flow state. It was also found that optimizations must be performed
over finite time intervals which are sufficiently long to accurately reflect the dynamical
evolution of the near-wall flow. After some difficulty, an extremely effective implementa-
tion of the optimal control technique was tested which reduced the drag of a Re, = 100
channel flow by approximately 50%. This far exceeds what is possible using heuristic
techniques in the same flow. The calculations also illustrate the sensitivity of important
integral flow quantities (such as drag) in a particular flow realization to small modifica-
tion of the control forcing; thus, a valuable new tool has been developed which may be
used to identify coherent turbulent structures responsible for important flow characteris-
tics and, more importantly, where these structures are most sensitive to control forcing.
Results are discussed in Part B: Optimal control of turbulence.

Comparison of the approaches discussed in Parts A and B led to an understanding
of how the concepts from linear robust control theory (i.e. Ho) may be extended to
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(a) Visualization of turbulent channel flow at Re, = 180. Shaded regions indicate coher-
ent structures of the near-wall turbulence. Flow is from left to right, walls are dark.
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(b) Top view of lower wall, which is covered with sensors and actuators in one possible
configuration.

FIGURE 1. The model problem studied in this work is turbulent flow in a plane channel. Small
amounts of blowing and suction will be applied through the computational equivalent of closely
spaced holes drilled in the walls in response to these turbulent motions in a manner which

reduces drag. This is a (very rough) approximation of the eventual physical implementation
illustrated in (b).

nonlinear problems in a consistent manner. System robustness is achieved, essentially,
by playing the “devils advocate” and attempting to find the “best” feedback control
in the presence of a small component of the “worst-case” disturbance forcing the state
equation. This type of forcing leads to controls which are less prone to cause instability in
the system in the presence of unmodelled disturbances at the price of a slight degradation
of performance for the nominal (i.e. undisturbed) plant. Such an approach is easily added
to the optimal control algorithm discussed in Part B, and is put in a rigorous framework
in Part C: Robust control of turbulence.

The final, and perhaps most important, result of this project is the development of a
technique with which simple, implementable control rules may be rigorously optimized
with similar methods. The control rules under consideration in this portion of the work
are based on flow information which may be obtained with flush wall-mounted sensors,
and determine via simple feedback rules the wall-normal component of the fluid velocity
distributed on the walls. The techniques of optimal and robust control theory are used
simply to optimize the unknown coefficients in these feedback rules. This work is still
under investigation, and is discussed in Part D: Optimization of practical feedback
rules for turbulence control.
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PART A.
Optimal and robust control of transition

Optimal and robust control theories are used to determine feedback control rules that
effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (un-
steady blowing/suction) with zero net mass flux is used as the control. Control algo-
rithms are considered that depend both on full flowfield information and on estimates of
that flowfield based on wall skin-friction measurements only. The development of these
control algorithms accounts for modeling errors and measurement noise in a rigorous
fashion; these disturbances are considered in both a structured (Gaussian) and unstruc-
tured (“worst case”) sense. The performance of these algorithms is analyzed in terms
of the eigenmodes of the resulting controlled systems, and the sensitivity of individual
eigenmodes to both control and observation is quantified.

1. Introduction

The behavior of infinitesimal perturbations to simple laminar flows is an important
and well-understood problem. As the Reynolds number is increased, laminar flows often
become unstable and transition to turbulence occurs. The effects of the turbulence
produced in such flows are very significant and often undesirable, resulting in increased
drag and heat transfer at the flow boundaries. Thus, a natural engineering problem is
to study methods of flow control such that transition to turbulence can be delayed or
eliminated.

Transition often occurs at a Reynolds number well below that required for linear in-
stability of the laminar flow. Orszag & Patera (1983) demonstrate that finite amplitude
two-dimensional perturbations can highly destabilize infinitesimal three-dimensional per-
turbations in the flow. Butler & Farrell (1992) show that the non-orthogonality of the
eigenmodes of subcritical flows implies that perturbations of a particular initial structure
will experience large amplification of energy before their eventual decay, and suggest that
such amplification can sometimes lead to flow perturbations large enough for nonlinear
instability to be triggered. Such nonlinear instabilities can lead to transition well below
the critical Reynolds number at which linear instability occurs. Results such as these
have renewed interest in the control of the small (linear) perturbations, as the mitigation
of linear perturbations also lessens the potency of these nonlinear “bypass” mechanisms.

A firm theoretical basis for the control of small perturbations in viscous shear flows
is only beginning to emerge. An important step in this direction is provided by Joslin
et al. (1995) and Joshi, Speyer, & Kim (1996), who analyze this problem in a closed-
loop framework, in which the dynamics of the flow system together with the controller
are examined. Joslin et al. (1995) apply optimal control theory to a problem related to
the one presented here; in their approach, the control is determined through an adjoint
formulation requiring full flowfield information. Joshi, Speyer, & Kim (1996) consider
essentially the same problem analyzed in this paper, and show that a simple constant
gain feedback with an integral compensator may be used in a single-input /single-output
(SISO) sense to stabilize the flow; a single output (the appropriate Fourier component of
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the streamwise drag) is multiplied by some scalar K and summed with a reference signal
to determine the corresponding component of the control velocity. This proportional
approach is a special case of a class of proportional-integral-derivative (PID) controllers,
which combine terms which are proportional, integrals, and derivatives of a scalar output
of a system.

The present work extends these analyses to rigorously account for state disturbances
and measurement noise. A two-step control approach is used. First, a state estimate
is developed from a (potentially inaccurate) model of the flow equations, with correc-
tions to this state estimate provided by (noisy) flow measurements fed back through an
output injection matrix L. This state estimate is then multiplied by a feedback matrix
K to determine the control. Potentially, this approach can yield better results than a
PID controller. In comparison to the PID approach, the present approach has many
more parameters in the control law (specifically, the elements of the matrices K and L),
which are rigorously optimized for a clearly defined objective. In this manner, multiple-
input /multiple-output (MIMO) systems are handled naturally and the controller is cou-
pled with an estimator which models the dynamics of the system itself.

Though a PID approach, such as that of Joshi, Speyer, & Kim (1996), is sufficient to
stabilize the present system, it is the authors’ judgement that application of modern
control theory to the same problem is a timely exercise. Many problems in fluid me-
chanics, especially those involving turbulence, are dominated by nonlinear behaviour.
In such problems, the linear analysis performed in this paper is not valid. However,
optimal control approaches, which use full state information, may still be formulated
(Abergel & Temam 1990) and performed (Moin & Bewley 1995) with impressive results.
In order to make such schemes practical, one must understand how to account for distur-
bances in a rigorous fashion and how to estimate accurately the necessary components
of the state (for instance, the location and strength of the near-wall coherent structures)
based on limited flow measurements. The current paper makes these concepts clear in
a fluid-mechanical sense, albeit for a linear problem, and thus provides a step in this
development.

The controllers and estimators used in this work are determined by application of #,
and Ho approaches. These techniques have recently been cast in a very compact form
by Doyle et al. (1989), and are well suited to the current problem, in which the issue
of interest is the ability of a closed-loop system to reject disturbances to a laminar flow
when only a few noisy measurements of the flow are available. The discussion presented
here will involve some tools seen often in the controls literature, such as block diagrams,
which are not in common use by the fluids community. Such tools were included only
after careful deliberation; it was concluded that these powerful tools are essential in
making this development clear, and are thus described in detail when used.

In §2, we derive the governing equations for the present flow stability problem and cast
these equations in a standard notation, which makes subsequent application of control
theory straightforward. In §3, the control problem is analyzed in terms of the controlla-
bility and observability of each individual eigenmode of the system developed in §2. In
§4, the control approach developed in Doyle et al. (1989) is summarized and applied to
the present system. In this control approach, two Riccati equations describe a family of
H, and Hoo controllers, which take into account structured (Gaussian) and unstructured
(“worst case”) disturbances. Results of these approaches are presented in §5, and §6
presents some concluding remarks.
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2. Governing equations

This chapter derives the equations governing the perturbations to a laminar channel
flow and casts them in a form to which standard control techniques may be applied. This
familiar discussion is presented to precisely define the control problem under considera-
tion. Readers interested only in how the control techniques are applied are advised to
proceed directly to §3.

2.1. Continuous form of flow equations

Consider a steady plane channel flow with maximum velocity Uy and channel half-width
8. Non-dimensionalizing all velocities by Up and lengths by §, the mean velocity profile in
the streamwise direction (z) may be written U(y) = 1—y? on the domain y € {—1,1]. The
equations governing small, incompressible, three-dimensional perturbations (u,v,w,p) to
the mean flow U are given by linearized Navier-Stokes and continuity

1},+U%u+U'U =—%+R}—6Au (2.1a)
o+ U%v = —g—z + I—%Av (2.1b)
u')—I—U(;%w =—-%+-§;Aw (2.1¢)

gg+g—;;+%—f—=0, (2.2)

where A = 3%/922 + 02/8y? + 0%/82* is the Laplacian, Re = Uyd/v is the Reynolds
number, v is the kinematic viscosity, dot (') denotes 8/8¢, and prime (') denotes d/dy.
A single equation for the normal component of velocity v, found by taking the Laplacian
of (2.1b), substituting for Ap from the divergence of (2.1), and applying (2.2), is

. 0 n 0
Av—{——UaA-i-U -(9—J;+A(A/Re)} . (2.3a)
The equation for the normal component of vorticity w = du/8z — dw/0z, found by
subtracting 8/8z of (2.1c) from 8/3z of (2.1a), is

o= { - U'é‘?;} v+ { - U% + A/Re} w. (2.3b)

As the domain is homogeneous in the z and z directions, we may Fourier transform the
solution such that

v(];>y>z’t) = Z 6(]92:’?/7]‘723” exp[z(km z + kZ Z)]
keoks

w(m,y,z,t) = 2 d’(kz>:’/>k25t) exp[i(kx.'l; + kz Z)]
kmskz

As the various Fourier modes are orthogonal and equations (2.3a) and (2.3b) are linear,
the solution for each wavenumber pair (k;, k) is decoupled and obeys the equations

Av={-ik, UA+ik,U" + A(A/Re)} v (2.4a)
w ={-1k, U} v+ {-1ko U + A/Re} v, (2.4b)

where the hat accents (") have been dropped for notational convenience and the Laplacian
now takes the form A = 82/8y® — k2 — k2. Equation (2.4a) is the (fourth order) Orr-
Sommerfeld equation for the wall-normal velocity modes, and (2.4b) is the (second order)
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equation for the wall-normal vorticity modes. Note the one-way coupling between these
two equations. Also note that, from any solution (v,w), the values of u, w, and p may
be extracted by manipulation of the above equations into the form

7 dv
u = m (kz a—y - k]z w) (25&)
—1 dv
— haha 2.5b
w T (kz By kmw) (2.5b)
Ap = —2ik, U'v. (2.5¢)

Control will be applied at the wall as a boundary condition on the wall-normal component
of velocity v. The boundary conditions on u and w are no-slip (v = w = 0), which implies
that w = 0 and (by continuity) dv/dy = 0 on the wall.

In this development, it is assumed that an array of sensors, which can measure stream-
wise and spanwise skin friction, and actuators, which provide wall-normal blowing and
suction with zero net mass flux, are mounted on the walls of a laminar channel flow.
It is also assumed that a sufficient number of sensors and actuators are installed such
that individual Fourier components of wall skin friction and wall transpiration may be
approximated, and the analysis is carried through for a particular Fourier mode.

2.2. Discrete form of flow equations

The continuous problem described above is discretized on a grid of N 4+ 1 Chebyshev-
Gauss-Lobatto points such that

y1 = cos(nl/N) for 0 I < N.

An (N +1) x (N + 1) matrix D may be expressed (Canuto et al. 1988, eqn. 2.4.31) such
that the derivative of w with respect to y on the discrete set of N + 1 points is given by

W =9uw and Ww'=9d,
where the prime (*) now indicates the (partial) derivative of the discrete quantity with

respect to y. The homogeneous Neumann boundary condition on v is accomplished by
modifying the first derivative matrix such that

~ 0 l=0,N
Dim =
D 1<ILN~-1.

Differentiation of v with respect to y is then given by
o = _5/0, o = _@v/, o' = 91)”, and M = @,

With these derivative matrices, it is straightforward to write (2.4) in matrix form.
This is accomplished by first expressing the matrix form of (2.4) on all N 41 collocation
points such that{

v=Lv (2.6a)
w=Cv+Suw, (2.6b)

where £, C, and S are (N + 1) x (N 4+ 1). The Dirichlet boundary conditions are
explicitly prescribed as separate “forcing” terms. To accomplish this, decompose £, C,

t Note that, for k2 4 k% # 0, the matrix form of the LHS of (2.4a) is invertible, so the form
(2.6a) is easily determined.
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and S according to
* * * %k * * * £ *
L=]bu1 Aun b2 C= by An b S=| % Ap =x
* * % * k * £ 3 * %k

where Alla A21, and Azz are (N—‘ 1) X (N‘ 1) and b]l, blZ, b21, and bzz are (N— 1) x 1.
Noting that wy = wxy = 0 by the no-slip condition, and defining

U1
: An 0 b1y bio
z=| N1 A= B = uE(UO),
wq N
. A21 A22 b21 b22
WN -1

where 7is 2(N — 1) x 1, Ais 2(N—-1)x2(N -1),Bis 2(N —1) x 2, and v is 2 X 1, we
may express (2.6) in the standard form

e

The vector z is referred to as the “state”, and the vector u is referred to as the “control”.

2.3. Wall measurements

We will consider control algorithms using both full flowfield information and wall infor-
mation only. For the latter case, we will assume that measurements made at the wall
provide information proportional to the streamwise and spanwise skin friction

ou ou
Ym1 = 7~ Ym2 = 5
8y upper wall ay lower wall
Ow Ow
Ym3 = Yma = 7 .
" By upper wall " 8,7/ lower wall

Equations (2.5a) and (2.5b) allow us to express these measurements as linear combina-
tions of v and w. Defining a = ik, /(k2 + k%) and b = —ik,/(k + k%) and using the

derivative matrices, the measurements are expressed as

Ymi = (aDﬁv+b’Dw) Ymz = (a’Dﬁv—{-bDw)

upper wall lower wall

ym3=(b'Dﬁv+aDw) '!im4=(b'D’15v+a'Dw)

upper wall lower wall ’

Now decompose DD and D according to

dl (&) (13 * C3 *

(DD)=] % * * D=|% x x



8 T. R. Bewley & P. Moin
where ¢;, ¢3, c3, and ¢4 are 1 X (N —1) and dy, dz, d3, and dy are 1 x 1. Finally, defining
Ymi acy bes ad; bds
— Ym2 — a cy b C4 — a dz b d4
Ym = yms ©= ber acs D=14a, ads |
Yma b Co acCy b d2 a d4

where ¥, is 4 x 1, C is 4 X 2(N — 1), and D is 4 x 2, allows us to express y,, in the
standard form of a linear combination of the state z and the control u

|ym = Czx + Du. (2.8)

The vector vy,, is referred to as the “measurement”.

2.4. Inner products and norms

For this paper, the inner product for two continuous complex functions « and v on the
domain y € [~1,1] is defined by

1
(u, v) = / w v dy, where  ((y) = (1—y?)™/?

-1

and the star (*) denotes the complex conjugate. The inner product for functions dis-
cretized on the collocation points y; is defined by

™

N W m = 0, N
(u, V)N = Z w(Zm) V(Zm) Cms where (= -
m=0 N 1 < m < N - ].

For sufficiently smooth functions u,v on a sufficiently large number N of Chebyshev-
Gauss-Lobatto grid points (Canuto et al. 1988), the discrete inner product approximates
the continuous inner product, (u, v)n = (u, v)¢. Note that, for two discrete vectors
¢ and 7 defined only on the interior grid points, or for vectors which are zero at the
boundary points m = 0, N, the inner product is given simply by

& mn= %f*n, (2.9)

where star (*) applied to a vector denotes conjugate transpose. The norm of v, denoted
[|v]], is defined as the square root of (v,v) for both the discrete and continuous cases.
Orthogonality of two functions implies that their inner product is zero.

3. Analysis of control problem

In §2, it was shown that the equations governing small perturbations in a laminar
channel flow may be expressed in the standard form

i = Az + Bu (3.1a)
Ym = Cz + Du, (3.1b)

where all variables are complex and the system matrix A is dense and non-self-adjoint.
We now discuss the eigenmodes of A and identify which of these modes may be modified
by the control « and which may be detected by the measurements ¥y,

It has been shown (Orszag 1971) that, for Re <5772, the uncontrolled problem itself
is stable and, for Re > 5772, weak instability is seen (though most of the eigenvalues
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remain stable), with the greatest instability near k, = 1.0 and k, = 0.0. We seek a
method to determine the control w which stabilizes the system in a manner which is
robust to system uncertainties. To simplify our discussion, we will restrict our attention
in the remainder of this work to the particular case Re = 10,000, k; = 1, and &k, = 0.
Joshi, Speyer, & Kim (1996) explore the (Re, k;, k,) parameter space further.

For k, = 0 (two-dimensional perturbations), C = 0 in (2.6), entirely decoupling the
w eigenmodes from both the v eigenmodes and from the control u = (vg, vy)T. In the
language of control theory, the w eigenmodes are thus “uncontrollable” by the control
u. (However, it is also seen that the w eigenmodes are stable, so these modes will, so to
speak, “take care of themselves”.) Thus, for the remainder of this paper, we will restrict
our attention to the the v eigenmodes according to system (3.1) with

U1
Vo
T = : A= A B=|bi1 b u=< ),
: N
UN -1

where zis (N —-1) x 1, Ais (N-1)x (N —-1),Bis (N—-1)x2,and wis 2 x 1, and

Ym1l acy ady bds

| vme _ aco _|ady bdy
Y= | s =1 ba D=1vd, ady |

Yma bep bdy ad,

where y,, s 4x 1, Cis 4 X (N —1), and D is 4 x 2. (All the constituent matrices, vectors,
and flow measurements are described in the previous section.)

3.1. System analysis

We now address whether or not all of the current system’s N — 1 eigenmodes may be
controlled by the m = 2 control variables, and whether or not all of these eigenmodes
may be observed with the p = 4 measurements. To accomplish this, it is standard
practice to consider two matrices which characterize the controllability and observability
of the system as a whole (Lewis 1995). These are the system controllability Gramian L,
of (A, B) and the system observability Gramian L, of (C, A), which may be found by
solution of

ALc+Lc.A*+BB*=0
A*L,+ L, A+C*C=0.

Note that stable numerical techniques to solve equations of this form, referred to as
Lyapunov equations, are well developed (Kwakernaak & Sivan 1972).

If L. is (nearly) singular, there is at least one eigenmode of the system which is (nearly)
unaffected by any choice of control u, and the system is called “uncontrollable”. If all
uncontrollable eigenmodes are stable, and a controller may be constructed such that the
dynamics of the system may be made stable by the application of control, the system is
called “stabilizable”.

Similarly, if L, is (nearly) singular, there is at least one eigenmode of the system which
is (nearly) indiscernible by the measurements ¥, and the system is called “unobserv-
able”. If all unobservable eigenmodes are stable, and an estimator may be constructed
such that the dynamics of the error of the estimate may be made stable by appropriate
forcing of the estimator equation, the system is called “detectable”.

For the present system, the smallest eigenvalue of both L, and L, are computed to be
near machine zero, indicating that the present system as derived above is both uncontrol-
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lable and unobservable. Gramian analysis can not identify which of the eigenmodes are
uncontrollable or unobservable, however, so it is impossible to predict from this analysis
alone whether or not the system is stabilizable and detectable. For this reason, we now
develop a method to determine which of the eigenmodes of a system may be affected by
the control « and, similarly, which eigenmodes may be discerned by the measurements

Ym.

3.2. Individual eigenmode analysis
We will now make use of the modal canonical form of the system (3.1) to quantify the
sensitivity of each eigenmode of A to both control and observation (Kailath 1980). In

order to clarify the derivation, we shall examine each eigenmode of the system separately.
Define the eigenvalues A; and the right and left eigenvectors, & and #;, of A such that

right eigenvectors: A= N &
left eigenvectors: nfA=M\n,
where the eigenvectors are normalized such that ||&]| = ||n:]] = 1 for all ¢, where || - || is

defined in §2.4. Assume A has distinct eigenvalues (this may be verified for the present
system described above). Then any z may be decomposed as a linear combination of the
(independent but not orthogonal) right eigenvectors such that

r = Za, fi. (3.2&)

Differentiating with respect to time,

i = Z & &;. (3.2b)

Also, note that left and right eigenvectors corresponding to different eigenvalues are
orthogonal

(j, &) =0 j#4, (3.3a)
but those corresponding to the same eigenvalues are not
(nj, &) # 0. (3.3b)

3.2.1. Definition of modal control sensitivity
By (3.1a) and (3.2), we have

Y ai&i=A) ai&i+Bu (3.4)
=Y aiXi&+ Bu. (3.5)

Taking the inner product with 7; and noting (3.3a) yields
(> &5 &) = (4, @5 25 &) + (nj, Buw).
By the definition of the inner product (2.9), and noting (3.3b), yields
. (B*n;)* u
Q= Ao + ———F—.
j i 3

If the vector B*n; = 0, then ¢; = Aja; for any . In terms of equation (3.2a), the
component of z parallel to £; is not affected by the control u, and the eigenmode is said
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to be “uncontrollable”. Further, the norm of the coeflicient of u
_ In; B B 'r)jll/z
fi= T el
which we shall call the control sensitivity of mode j, is a quantitative measure of the
sensitivity of the eigenmode 5 to the control u. Note the dependence of this expression

on the matrix B B*, which is the same term which drives the Lyapunov equation for
controllability Gramian L.

(3.6)

3.2.2. Definition of modal observation sensitivity

By (3.1b) and (3.2) and assuming, for the moment, that © = 0, we have
Ym = zaj Cf;
J

If the vector C'§; = 0, then y,, will not be a function of ;. In terms of equation (3.2a),
the component of z parallel to {; does not contribute to the measurements y,,, and the
eigenmode is said to be “unobservable”. Further, the norm of C¢;

g =€ CrCg|?, (3.7)

which we shall call the observation sensitivity of mode 7, is a quantitative measure of
the sensitivity of the measurement y,, to eigenmode j. Note the dependence of this
expression on the matrix C*C, which is the same term which drives the Lyapunov
equation for observability Gramian L.

3.3. Sensitivity of eigenmodes of A to control and observation

The least stable eigenvalues of A and their corresponding control and observation sensi-
tivities f; and g; are tabulated in table 1. Note that the fourth eigenmode is five orders
of magnitude less sensitive than the first eigenmode to modifications in the control. In
general, those modes in the upper branch of figure la (large |S(A)|) are much less sensi-
tive to control than those in the lower branch (small |$()A)|). Near the intersection of the
two branches (R(A) & —0.3), the control sensitivity is maximum, with this sensitivity
decreasing slowly to the left of this intersection (R(A) < —0.3). It can be predicted that
the eigenmodes corresponding to the largest f; may be affected most upon application
of some feedback control «.

Note that the flow measurements are two orders of magnitude less sensitive to the
fourth eigenmode as they are to the first eigenmode. It can be predicted that the state
estimates of the eigenmodes corresponding to the largest g; will be most accurate when
estimating the state based on the measurements in the presence of noise.

An important observation from figure 1b is that eigenvalues in the upper branch of
figure la have corresponding eigenvectors with variations primarily in the center of the
channel, and are thus less controllable via wall transpiration and less observable via wall
measurements than eigenvalues in the lower branch. This observation is quantified by
reduced values of f; and g; for these modes in table 1.

The second eigenvalue computed, at Ay = —0.0235 4+ 1.520¢ is spurious. Spurious
eigenmodes may be easily identified two ways: i) the eigenvalue moves significantly when
N is modified slightly, though the eigenvalues reported in table 1 remain converged, and
ii) when plotted, spurious modes are dominated by large oscillations from grid point
to grid point across the entire domain, though converged eigenmodes are well resolved.
Spurious eigenmodes are expected using this approach and may be disregarded.
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-

(a) Least stable eigenvalues: [S();)| versus R(A;).

(b) Eigenvectors corresponding to (left to right): j = 1 (unstable, lower branch),
j = 3 (stable, upper branch), ; = 4 (stable, upper branch), and j = 5 (stable,
lower branch), plotted as a function of y from the lower wall (bottom) to the upper
wall (top). Real component of eigenvector is shown solid and imaginary component
dashed. Corresponding eigenvalues are reported in table 1.

FIGURE 1. Least stable eigenmodes of A (no control).
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J Aj i g
1 0.00373967 — 0.23752649 7 0.266545 102.61
3 —0.03516728 — 0.96463092 ¢ 0.000215 72.85
4 —0.03518658 — 0.96464251 ¢ 0.000005 1.45
5 —0.05089873 — 0.27720434 ¢ 0.026606 347.98
6 —0.06320150 — 0.93631654 ¢ 0.000513 81.39
7 —0.06325157 — 0.93635178 ¢ 0.000021 2.90
8 —0.09122274 — 0.90798305 ¢ 0.000931 83.36
9 —0.09131286 — 0.90805633 % 0.000056 4.32
10 —0.11923285 — 0.87962729 ¢ 0.001587 77.67
11 —0.11937073 — 0.87975570 ¢ 0.000124 5.37
12 —0.12450198 — 0.34910682 4 0.171859 69.50
13 —0.13822653 — 0.416351024 0.037660 252.09
14 —0.14723393 — 0.85124584 ¢ 0.002833 63.31
15 —0.14742560 — 0.85144938 7 0.000268 5.59
16 —0.17522868 — 0.82283504 7 0.005581 44.14
38 —0.32519719 — 0.63610486 ¢ 5.659801 0.78
39 —0.34373267 — 0.67764346 7 4.685315 0.64
53 —0.66286552 — 0.67027520 7 0.259581 11.58

TABLE 1. Least stable eigenmodes of A (no control) and the associated control and observation
sensitivities. Note that all eigenvalues agree precisely with those reported by Orszag (1971).
Calculation used Chebyshev collocation technique with N = 140 in quad precision (128 bits per
real number). The second eigenmode, which is not shown here, is spurious (see text). Note that
the only unstable mode (j = 1) for the present system is both sensitive to the control » and
easily detected by the measurements ¥..

4. Summary of H, and H., control theories

In §2, it was shown that the equations governing small perturbations in a laminar
channel flow may be expressed in the standard form

2 = Az + Bu (4.1a)
Ym = Cz + Du, (4.1b)

where the constituent matrices A, B, C, and D were summarized and discussed in §3.
We now seek a simple method to determine a control u based on the measurements
ym to force the state z towards zero in a manner which rigorously accounts for state
disturbances, to be added on the RHS of {4.1a), and measurement noise, to be added on
the RHS of (4.1b). Specifically, we will consider feedback of the measurements y,, such
that a state estimate Z is first determined by the system model

i = A%+ Bu—# (4.2a)
1‘7711, =C%+ Du, (42b)
o = L('!/m - ?7nz), (4.2C)

then this state estimate is used to produce the control

u = K(&). (4.3)
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Equation (4.1), with added disturbance terms on the RHS, is referred to as the “plant”,
(4.2) is referred to as the “estimator”, and (4.3) is referred to as the “controller”. The
problem at hand is to compute linear time-invariant (LTI) functions £ and K such that i)
the “output injection” term 4@ forces the state estimate # in the estimator (4.2) towards
the state z in the plant (4.1), and ii) the control u computed by the controller (4.3) forces
the state z towards zero in the plant (4.1).

The flow of information in this problem is illustrated schematically in the following
block diagram.

disturbances

v

measurements plant <}

Ym
V

estimator < control

Uu

state estimate

~

z L= controller

The plant, which is forced by external disturbances, has an internal state z which cannot
be observed. Instead, a few noisy measurements y,, are made, and with these measure-
ments an estimate of the state £ is determined. This state estimate is then fed back to
through the controller to determine the control u to apply back on the plant in order to
regulate z to zero.

We will now demonstrate how to apply Ha and Ho control theories to determine
L and K. (Note that we will redefine several variables used in §2 to derive the Orr-
Sommerfeld equation. Considered in the context of this chapter, this should present no
confusion.) With this presentation, one set of control equations, involving the solution of
two Riccati equations, describes a family of H2 and Hoo control algorithms. The reader
is referred to Doyle et al. (1989), Dailey et al. (1990), and Zhou, Doyle, & Glover (1996)

for derivation and further discussion of the control theories summarized here.

4.1. H, control theory
4.1.1. Optimal control (LQR)

The first step in considering the system (4.1) is to consider the problem with no
disturbances and measurements which identically determine full information about the
state, so that & = z (i.e. no estimation of the state is necessary). These assumptions are
quite an idealization and can rarely be accomplished in practice, but this exercise is an
important step to determine the best possible system performance. It is for this reason
that the controller in this limit is referred to as optimal. Under these assumptions
about the system, the objective of the optimal controller, of the form in (4.3), is to
regulate (4.e. return to zero) some measure of the flow perturbation # from an arbitrary
initial condition as quickly as possible without using excessive amounts of control forcing,.
Mathematically, a cost function for this problem may thus be expressed as

JLor = / (||L||2 + ¢ u*u) dt. (4.4)
0
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The term involving ||z||? is a measure of the flow perturbation z integrated over the
time period over which this perturbation decays, which is taken as ¢t € [0,00). The
term involving w*u is an expression of the magnitude of the control. These two terms are
weighted together with a scalar #2, which represents the price of the control. This quantity
is small if the control is “cheap” (which generally results in larger control magnitudes),
and large if applying the control is “expensive”. As the state equation is linear, the cost
quadratic, and the control objective regulation, this controller is also referred to as a
linear quadratic regulator (LQR).

The mathematical statement of the present control problem, then, is the minimization
of Jrgr. This results in regulation of z without excessive use of control effort. Note
that minimization of Jrqr is equivalent to minimization of the integral of z*z, where

z= (Q1/2 1/1}>

and where ) is a diagonal matrix with diagonal entries Q;; = 7/N, as required by the
definition of the norm in §2.4. In order to arrive at a form which is easily generalized in
later sections, define

1/2
B,= B CIE(Q()M) DIZE(?>.

For notational convenience, the state equation (4.1a) will be considered as “forced” with
a right hand side forcing term r which shall be set to zero, as this regulation problem
simply drives the state towards zero without external command input. The state equation
(4.1a), the performance measure z, and the state estimate # then may be written

T=Az +7+ Byu (4.5a)
z = Cl.’IJ + Dlzu (45]:))
&= . (4.5¢)

The optimal controller Krgr is sought to relate the control uw to the (precise) state
estimate . Control is applied to modify the evolution of the state z such that the cost
Jror(z) is minimized. The important matrices of the system described by (4.5) may be
summarized in the shorthand form

T A U

:i} A | I Bz

Pror= =z Ci |0 Dy
I I 0 0

The flow of information is represented by the block diagram

4 r=20
<} e p—e—eee
Pror

T | U
Kror

where Pror is the flow system given by (4.5) and Kpqr is the optimal controller, which is
still to be determined. Note that the command input is r = 0 and there are no disturbance
inputs; the task of the control « is simply to regulate the state z from nonzero initial
conditions back to zero. The state # = # is fed back through the controller Krgr to
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control the system. The system output z may be used to monitor the performance of
the system.
Given this general setup, a Hamiltonian is defined such that

_( A  -B:Bj
H2 = (“‘Cik 01 _A* ) . (468.)

As shown in Doyle et al. (1989), the Hermetian positive-definite solution X, to the alge-
braic Riccati equation defined by this Hamiltonian

A*Xz +X2A~—X2 (B2 B;)X2+(C{‘ Cl)=0, (46b)
denoted X, = Ric(Hy), then yields the optimal LTI state feedback matrix
Ky = —B; X». (4.6¢)

The optimal LTI controller Kzgr is then given simply by
u= Ky 3 (4.7)

This controller minimizes fooo z*z dt in a system with no disturbances and arbitrary initial
conditions. Note that standard numerical techniques to solve equations of the form (4.6b)
are well developed (Laub 1991).

4.1.2. Kalman-Bucy filter (KBF)

When there are disturbances to the system, and thus the state is not precisely known,
the state (or some portion thereof) must first be estimated, then the control determined
based on this state estimate. The Kalman-Bucy filter, of the form (4.2), accomplishes the
required state estimation by assuming that the state disturbances and the measurement
noise are uncorrelated white Gaussian processes. To accomplish this, we introduce two
zero-mean white Gaussian processes w; and w, with covariance matrices Elwjw;] = I,
E[wjws] = I, where E[] denotes the expectation value. With these new disturbance
signals, and with G, defined as the square root of the covariance of the disturbances to
the state equation and G defined as the square root of the covariance of measurement
noise, the system (4.1) takes the form

¢ = Az + Gyw; + Bu (4.8a)
Ym = Cxz + Gowz + Du. (4.8b)
The objective of the Kalman-Bucy filter is to estimate the state x as accurately as possible

based solely on the measurements y,,,. Put another way, the Kalman-Bucy filter attempts
to regulate the norm of the state estimation error zg to zero, where

rp=x— I

and where the state estimate Z shall be determined by a filter of the form (4.2). Mathe-
matically, a cost function for this problem may thus be expressed as

Jxer = E[||26]?], (4.9)

where zg = z g for notational convenience. (As Gaussian disturbances w; and w; con-
tinually drive this system, an integral on ¢t € [0,00), as used to define Jrgr, is not
convergent for this problem, and the expectation value is the relevant measure.)

The mathematical statement of the present control problem, then, is the minimization
of Jxpp. This results in a “best possible” estimate of the state z. In order to arrive at
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a form which is easily generalized in later sections, assume G5 is nonsingular and define

B = (G, 0) C.=G;'C Dy =(0 1)

w= (1) .
wa
Also, define new “observation” vectors y and ¢ by a simple change of variables such that

y =Gy (ym — Du) 7= G5 (ijm — Du).

and the vector of disturbances

Note that this change of variables does not represent any real limitation, for whenever any
flow measurement y,,, is made in a physical implementation, the control u at that moment
is also known, so the observation ¥ is easily determined from the flow measurement ¥,,.
With this change of variables, (4.8b) and (4.2b) may be expressed as

y=Cz+ Dy w (4.10a)
9§ = Cs &. (4.10b)
As we are developing the equations for an estimator, it is appropriate now to examine the

equations for the state estimation error zg and the ouput estimation error yg = y — 4.

Subtracting (4.2a) from (4.8a) and (4.10b) from (4.10a) yields the system

ip=Azg +Byw+ (4.11a)
2 =g (4.11b)
yp = Cyzp + Dnw. (4.11c)

The Kalman-Bucy filter Lxpp is sought to relate the output injection term 4 to the
output estimation error yg. The extra term 4 is applied in these model equations to
control the evolution of the state estimation error zg such that the cost Jxpr(zg) is
minimized in the presence of Gaussian disturbances w. The important matrices of the
system described by (4.11) may be summarized in the shorthand form

g W 7

ig[ A| B I

Pxpr = zE I 0 0
YE Cy | D2y O

The flow of information is represented by the block diagram

ZE w
<] M
PxBr

YE ’ \ i
LkBr

where P pr is the flow system given by (4.11) and Lxpr is the Kalman-Bucy filter, which
is still to be determined. This system accounts for Gaussian disturbances w and noisy
observations yg of the system, which are fed back through the filter Lxpr to produce
the state estimate. The system output zg may be used to monitor the performance of
the system. Note the striking similarity of the structure of Pxpr to the structure of
the conjugate transpose of Prgpr. For this reason, these two problems are referred to as
“duals”, and their solutions are closely related.
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Given this general setup, another Hamiltonian is defined such that

(A =G

As shown in Doyle et al. (1989), the Hermetian positive-definite solution Y2 to the alge-
braic Riccati equation defined by this Hamiltonian

AY, + Y, A* —Y,(C5 Ca) Y2 + (B1 BY) =0, (4.12b)
denoted Y, = Ric(J;), then yields the LTT estimator feedback matrix
Ly,=-Y,C;. (4.12¢)
The LTI Kalman-Bucy filter Lxpr is then simply given by
i =Lyyg,

and thus the complete state estimator is given by

i=Af+Byu—Ly(y— Co) (4.13)

This estimator minimizes E[||z — £||?] in a system with Gaussian disturbances in the
state equation and Gaussian noise in the measurements.

4.1.3. Hs control (LQG =LQR + KBF)

An estimator/controller of the form (4.2)—(4.3) for the complete system described by
(4.8) with Gaussian disturbances may now be constructed. The objective of the control
is to minimize

I = E[||=||* + £ u*u], (4.14)

where || - || denotes the “2-norm” as defined in §2.5. Note that minimization of J, is
equivalent to minimization of the expectation value of z*z, where

z = (Q1/2 ‘Z/K) )
U

and @ is a diagonal matrix with diagonal entries Q;; = m/N as required by the definition
of the norm in §2.4. As the control objective is the minimization of the expectation value
of the square of a 2-norm, this type of estimator/controller is referred to as Hz. As the
state equation is linear, the cost quadratic, and the disturbances Gaussian, this type of
estimator/controller is also referred to as linear quadratic Gaussian (LQG).

Combining the notation developed in the previous two sections

1/2
Bl = (G1 0) Cl = (Q 0 /ﬁ) Dlg = <?>
B,=B C,=G;'C Dy =(0 I),

with the vector of disturbances w and the observation vectors y and ¢ defined such that

_ (wl) y =Gy (ym — Du)
w2 § = Gy (§m — Du),
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the system (4.8) and the control objective for the minimization of J; take the form

z=Azx +Biw+Byu (4.15a)
z = Ciz+ Dipu. (4.15b)
y = Coz + Dyyw. (4.15¢)

An H, estimator/controller is sought to relate the observations y to the control %, which
is applied to control the evolution of the state z such that the cost J2(z) is minimized
in the presence of Gaussian disturbances w. The important matrices of the complete
system described by (4.15) may be summarized in the shorthand form

€ w U

.’i) A I Bl Bz

Pco’mplete = z Ci 0 Dy
yL Co| Dy 0

Similarly, the important matrices of the model plant in an estimator of the form (4.2)
may be represented in the shorthand form

T U U

&7 A|-I B,

Prodel = & I 0 0
i C,| O 0

With these representations, the flow of information is represented by the block diagram

system output disturbances
z w
< <——
Pompiete
observation R
Y
I—_ —_——mmmemmememmmeme—— l
P |
81 Lo |
Bl - ' '
gl “ 1| control
=y ‘ u
;%/ : | Pmodel i
S |
state estimate
z K,

(controller)

The plant, which is forced by external disturbances w, has an internal state z which
cannot be observed. Instead, a few noisy observations y are made, and with these
observations an estimate of the state Z is determined. This state estimate is then fed
back to through the controller to determine the control v to apply back on the plant in
order to regulate z to zero. The system output z may be used to monitor the performance
of the system.
The remarkable result from control theory (Lewis 1995) is that the H, estimator/controller

of the form illustrated in the above block diagram which minimizes J5 for this system is
formed by simple combination of the optimal controller and the Kalman-Bucy filter such
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that
=A%+ Byu—Ly(y—Cy ) (4.16a)
u= Ky % (4.16b)
where K is given by (4.6)
. . A —B,; B3
K, = -BZ X5 X, =Ric (“Cf Cl _124* 2) (416C)
and L is given by (4.12)
_ . o A* -C5 Cy
Lz = —1/2 CZ Yz = Ric (“Bl Bi,( —A > . (416(21)

Note the separation structure of this solution. The computation of K> does not depend
upon the influence of the disturbances, which are accounted for in By and C. The
computation of Ly does not depend upon the weightings in the cost function, which are
accounted for in Cy, or the manner in which the control u affects the state, which is
accounted for in B,. In other words, the problem of control and the problem of state
estimation are entirely decoupled.

Note also that, in order to arrive at the (relatively) simple control equations described
by Doyle et al. (1989) and outlined in this section and the next, the matrices A, By, Bo,
C1, Cy, D1a, and Dy, are assumed to satisfy eight required properties. The first four of
these properties

(A, B;) stabilizable (C1, A) detectable
(A, Bs) stabilizable (Cy, A) detectable

are verified @ posteriori, simply by examination of the results. (Note that the analysis
of §3.3 indicates that there is only one slightly unstable mode for this system, and that
this mode is both sensitive to the application of control and easily discerned by the mea-
surements. Thus, we may presume, but not assert rigorously, that these four conditions
will in fact be satisfied.) The matrices are constructed to satisfy the other four of these
properties identically

DI*Z Cl = 0 sz D12 = I
BiD; =0 D21 D3 =1,

as may be verified directly with the definitions of these matrices.

4.2. Hoo control

The Hoo estimator/controller described in this section is very similar to the H» estima-
tor/controller described previously. Consideration is now given to disturbances, which
we shall distinguish with a new variable x, of the “worst” possible structure (as made
precise below), rather than the Gaussian structure assumed in the H; case. Considered
in the frequency domain, the estimator/controllers developed in this section provide a
system behaviour in which the maximum singular value of the closed-loop transfer func-
tion, also known as the “co-norm”, is less than some constant, which shall be referred to
as 7. As this approach may be interpreted as bounding the oco-norm of the transfer func-
tion from the disturbances to the performance measure, it is referred to as Hoo control.
For further details of the frequency-domain explanation of H, the reader is referred to
Doyle et al. (1989) and Zhou, Doyle, & Glover (1996).
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The governing equations to be considered in this section are identical to (4.15):

#=Az + By x+Byu (4.17a)
z = Ciz+ Diou (4.17b)
y = Cox + D21 ). (4.17¢)

As before, the G; and G; matrices used to define this system describe any covariance
structure of the disturbances known or expected a prior: (for instance, if one measurement
is known to be noisier than another). These matrices are taken as identity matrices if no
such structure is known in advance.

An H, estimator/controller is sought to relate the observations ¥ to the control u,
which is applied to control the evolution of the state z such that the cost Jwo(2) is
minimized in the presence of some “worst case” disturbance x. The flow of information
is represented by a block diagram similar to that shown in §4.1.3.

Effectively, the cost function considered for Ho, control is

Joo = E[2* Qz + £ u*u — 4 x"x]. (4.18)

A wu is sought, through an estimator/controller of the form (4.2)—(4.3), to minimize
Joos while simultaneously an external disturbance y is sought to mazimize J. (In this
manner, ¥ 1s the “worst possible” disturbance, as it is exactly that disturbance which
increases the relevant cost function the most.) Thus, the Ho, problem is a “min-max”
problem. The term involving —v? limits the magnitude of the unstructured disturbance
in the maximization of J with respect to x in a manner analogous to the term involving
#2, which limits the magnitude of the control in the minimization of J, with respect to
u.
The result (Doyle et al. 1989) is that an Hoo estimator/controller of the form (4.2)—
(4.3) which minimizes Jo in the presence of some component of the worst case unstruc-
tured disturbance x for this system is given by

#=A%+Byu— Lo (y— Co 2) (4.19a)
u= Kok (4.19b)
where K, 1s given by
_ % T A 7—2 B Bf - B, B;
Kow=-BXx X = Ric ("Cl* o A (4.19¢)

and Lo 1s given by

_ y o A* ¥ 2CyCL - C3 Cy
Lo =-Y,C; Y. =Ric <_B1 B ~A . (4.194)

Note first that, in the v = oo limit, the Hy estimator/controller is recovered, so the set of
two Riccati equations in (4.19) describes both the #H; (optimal control + Kalman-Bucy
filter) and the #, problems.

It may also be shown that, as the upper-right blocks of the Hamiltonians may not be
negative definite, a solution to these Riccati problems exists only for sufficiently large v;
the smallest v = -y for which a solution to these equations exists may be found by trial
and error (Doyle et al. 1989). An H. estimator/controller for v > 7 is referred to as
suboptimal.
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4.3. Comparison of Hy and Hoo control equations

Most of the robustness problems associated with Hy stem from the state estimation. Op-
timal (LQR) controllers themselves, provided with full state information, generally have
excellent performance and robustness properties (Dailey et al. 1990). Recall from §4.1.3
that the problems of control and state estimation in the #, formulation are decoupled.

An important observation of §4.2 is that the problems of control and state estimation
in the Hoo formulation are coupled. Specifically, the computation of K, depends on the
expected covariance of the state disturbances, which are accounted for in B;, and the
computation of Lo, depends on the weightings in the cost function, which are accounted
for in C;. This is one of the essential features of #, control.

By taking into account the expected covariance of the state disturbances, reflected in
By, when determining the state feedback matrix Ko, the components of Z correspond-
ing to the components of z that are expected to have the smallest forcing by external
disturbances are weighted least in the feedback control relationship v = Ko Z.

Similarly, by taking into account the weightings in the cost function, reflected in Ci,
when determining the estimator feedback matrix L, the components of Z corresponding
to the components of z that are least important in the computation of J.. are forced
with the smallest corrections by the output injection term Lo (y — §) in the equation for
the estimator.

By applying strong control only on those components of & significantly excited by
external disturbances, and by applying strong estimator corrections only to those com-
ponents of # important in the computation of the cost function, H feedback gains for
components of the system not relevant to the control problem are reduced from those
in the Hy case. With such feedback gains reduced, the stability properties of Hoo es-
timator/controllers in the presence of state disturbances and measurement noise may
be expected to be better than their H, counterparts, at the cost of a (hopefully, small)
degradation of performance in terms of the 2-norm of the output z for the undisturbed
system.

4.4. Numerical method

Standard numerical techniques are now applied to all aspects of this problem. In order
to simplify both the theory to be presented and the numerical algorithm to be coded, no
further manipulation of the equations is used beyond the matrix representations (4.17)
and (4.19). It was observed that the minimal realization approach (Kailath 1980) is well
suited to reduce the computation time necessary to determine effective control algorithms
by the present approach; however, such an approach was not found to be necessary in
the present case.

The algebraic Riccati equations are solved using the method of Laub (1991), which
involves a Schur factorization. This is found to be a stable numerical algorithm for all
cases tested. The implementation of Laub’s method is written in Fortran-90 and follows
closely the algorithm used by the Matlab function are.m (Grace et al. 1992). A Lyapunov
solver, modelled after the Matlab function lyap.m, is also used to compute the system
Gramians.

Two LAPACK routines (Anderson et al. 1995), zgeev.f and zgees.f, are used to
compute eigenvalues/eigenvectors and Schur factorizations. These routines are compiled
in quad precision (128 bits per real number) to ensure sufficient numerical precision in the
eigenvalue computation. All computations are carried out with N = 140 to ensure good
resolution of all significant eigenmodes. The eigenvalues of A match all those tabulated
by Orszag (1971) to all eight decimal places, as shown in table 1, indicating that this
numerical method is sufficiently accurate.
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5. Performance of controlled systems

We now examine the behaviour of the “closed-loop” systems obtained by application
of the above controllers and estimators to the “nominal” (i.e. no disturbances) channel
flow stability problem. In other words, we examine the behaviour of the flow and the
estimator/controllers operating together as a single dynamical system. By looking at
“root locus” plots which map the movement of the eigenvalues of these systems in the
complex plane with respect to the relevant parameters, this behaviour is well quantified,
as long as all perturbations remain small enough that the linearity assumption remains
valid. We shall also examine the control and observation sensitivities defined in §3.2 for
two special cases in order to better understand the fundamental limitations of controllers
and estimators applied to the present system.

5.1. Hs control
5.1.1. Optimal control (LQR)

In order to investigate the controllability of the closed-loop eigenmodes when all modes
are observable, consider the system described in §4.1.1. With r = 0 and examining only
the equations for 4 and £, the plant is given (in the shorthand notation used in §4) by

T u
.’" A Bz
Pror=
R A
with the control now given by
u=Kyi+u,

where an additional control term u’ has been added to study the sensitivity of the closed-
loop system to further modification of the control. Putting the plant and the controller
together, the closed-loop system may be represented by

T u'

o[ A+BK, | B .
PLQR(clo.sed loop) = ; [ Iz 2 | 02 ] . (5 1)

The eigenmodes of Ag, = A+ By K, describe the dynamics of the closed-loop system for
the unmodified control rule (u' = 0). Figure 2a shows the movement of these eigenvalues
with respect to the free parameter of the control problem, £, used to determine K5. The
eigenvalues for £ — oo are observed to be very near those of the uncontrolled system A
in figure la, with the previously unstable mode moved just to the left of the imaginary
axis. The eigenvalues generally move to the left as £ is decreased. Figure 2b shows the
shape of the first four eigenmodes of the closed-loop system. Comparing figure 2b with
figure 1b, it is seen that the control modifies most those eigenmodes with significant
variations near the wall.

The sensitivity of the eigenmodes of the system (5.1) to modification of the control
rule may be quantified by performing the analysis of §3.2.1, replacing the eigenmodes of
A by the eigenmodes of Ag,. The result of this analysis for small £ is shown in table 2.
This table shows that, in the £ — 0 limit, the system matrix is modified to the point that
the eigenmodes are no longer sensitive to further modification of the control. In other
words, all the controllable dynamics of the system have been modified by Ky and are
accounted for in the closed loop system in this limit. This is one demonstration that the
optimal controller extracts the best possible performance from a given (full-information)
system.
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(a) Root locus of least stable eigenvalues of Ak, as a function of the free
parameter of the Hy controller, £. The eigenvalues for £ — oo are marked

with an (x).

-

‘ ™

(b) Eigenvectors of Ag,, with £ = 107*, corresponding to (left to right): j =1, j
j =4, and j = 5. Corresponding eigenvalues are reported in table 2.

FIGURE 2. Least stable eigenmodes of Ax,.

3,
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J Aj fi
3 -0.03513233 — 0.96462128: 0.000000029
4 —0.03518652 — 0.96464261¢ 0.000000001
5 —0.06255259 — 0.292627114 0.000001101
6 —0.06310358 — 0.93629329: 0.000000070
7 —0.06325089 — 0.93635257¢ 0.000000003
1 —0.06644730 — 0.29721403: 0.000001116
8 —0.09102975 — 0.907939514 0.000000129
9 —0.09130964 — 0.90805917: 0.000000008
10 —0.11890731 — 0.87955083: 0.000000226
11 —0.11936036 — 0.879762463 0.000000020
12 —0.14335180 — 0.439620231¢ 0.000002303
14 —0.14673294 — 0.85111508: 0.000000414
15 -0.14739907 — 0.851461613 0.000000045
13 —0.14803996 — 0.445868384 0.000003081
16 —0.17450455 — 0.82261690: 0.000000842

TABLE 2. Least stable eigenmodes of the closed-loop system Ag, and their sensitivity to control
for the optimal controller in the cheap control limit (£ = 10™*). The numbering of the eigenvalues
shown is the same as the numbering of the eigenvalues of table 1 to which they are connected by
the root locus of figure 2. Note that the control in this limit drives all eigenmodes to positions
at which they are insensitive to further modifications of the control, as illustrated by the large
reductions in f;. Note also that those eigenmodes with the largest values of f; in table 1
(specifically, those in the lower branch) have moved the most.

5.1.2. Kalman-Bucy filter (KBF)

The estimator itself has its own set of dynamics. These dynamics are captured by
the equations for the state estimator error, as described in §4.1.2. We now make use of
this system in order to investigate the observability of closed-loop eigenmodes when all
modes are controllable. With w = 0 and examining only the equations for zg and yg,
this plant is given by

T

E
P A

Prpr = T [ ]
ye | Co

with the output injection now given by

O~

~ At
= Lyygp + 4,

where an additional output injection term @' has been added to study the sensitivity of
the closed-loop system to further modification of the output injection rule. Putting the
plant and the estimator together, the closed-loop system may be represented by

~t

TE 4
x A+Ly Cy | 1 .
PKBF{closed loop) = r;z [ CZZ 2 { 0 ] . (5 2)

The eigenmodes of Ay, = A+ Ly Cy describe the dynamics of the closed-loop system for
the unmodified output injection rule (%' = 0). Figure 3 shows the movement of these
eigenvalues with respect to the free parameters of the estimator problem. (This is done
by assuming that the matrices describing the covariance of the disturbances have the
simple form Gy = ¢; I and G5 = g2 I, where g; and g, are real scalars.) The eigenvalues
for g = go = 0 are very near those of the uncontrolled system A in figure la, with the
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FIGURE 3. Root locus of least stable eigenvalues of Az, as a function of the free parameters
of the Hs estimator, g, and g2 (note that we take gy = g2 for the purpose of drawing the root
locus). The eigenvalues for g1 = g2 — 0 are marked with an (x).

J Aj gj

3 —0.03505745 — 0.96474093: 0.000000568
4 —0.03518656 — 0.96464253: 0.000000004
6 —0.06287931 — 0.936680864 0.000000644
7 —0.06325136 — 0.93635193: 0.000000008
5 —0.08362450 — 0.250668564 0.000002858
8 ~-0.09059621 — 0.908748174 0.000000673
9 —0.09131196 — 0.908056891 0.000000011

1 —0.09565183 — 0.17658643: 0.000000094
10 —0.11823779 — 0.880951224 0.000000646
11 —0.11936807 — 0.87975709: 0.000000014
12 —0.14209547 — 0.25910275:¢ 0.000000130
14 —0.14584717 — 0.853295674 0.000000549
15 ~0.14741926 — 0.85145223: 0.000000014
16 —0.17347707 — 0.82577419: 0.000000399
13 —0.17418920 — 0.403146561 0.000002002

TABLE 3. Least stable eigenmodes of the closed-loop system Ar, and their sensitivity to obser-
vation for the Kalman-Bucy filter in the large disturbance limit (g1 = g2 = 10?). The numbering
of the eigenvalues shown is the same as the numbering of the eigenvalues of table 1 to which
they are connected by the root locus of figure 1. Note that the estimator in this limit modifies
all eigenmodes until the measurements are no longer sensitive to them, as illustrated by the
large reductions in g;. Note also that those eigenmodes with the largest values of g; in table 1
(specifically, those in the lower branch) have moved the most.
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FIGURE 4. Least stable eigenvalues of the composite closed-loop system with the 2 estima-
tor/controller, taking £ = g1 = gz = 1. Note that the eigenvalues are simply the eigenvalues of
the closed loop controller (+) together with those of the closed loop estimator (*).

previously unstable mode moved just to the left of the imaginary axis. The eigenvalues
generally move to the left as g; and g, are increased.

The sensitivity of measurements yg to the the eigenmodes of the system (5.2) may
be quantified by performing the analysis of §3.2.2, replacing the eigenmodes of A by the
eigenmodes of Ar,. The result of this analysis for large g1 = g2 is shown in table 3.
This table shows that, in the g = g2 — oo limit, the system matrix 1s modified to the
point that the measurements are no longer sensitive to the eigenmodes of the closed-
loop system. In other words, all the measurable dynamics of the system have been
extracted by L2 and are accounted for in the closed loop system in this limit. This is
one demonstration that the Kalman-Bucy filter extracts the best possible state estimate
from a given (fully-controllable) state estimator.

5.1.3. Hs control (LQG = LQR + KBF)

It was mentioned in §4.1.3 that the estimator/controller which minimized the relevant
cost functional (J3) in the presence of Gaussian disturbances could be found by consid-
ering the controller and estimator problems separately. In this section, it is shown that
the closed-loop performance of a system of the form (4.15) (without disturbances)

T=Axz+ Byu
y=Cox
combined with an estimator/controller of the form (4.16)
.7.“;=A.1“:+Bzu—L2(y—C'2fi')
uw=Ky 1

may also be evaluated by considering the estimator and controller problems separately.
To accomplish this, simply combine the above equations into the closed-loop composite
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FiGURE 5. Root locus of least stable eigenvalues of the H controller versus v, taking £ = 100,
g1 = g2 = 0.001. The result with ¥ — oo, marked with the (x), gives the corresponding H.
controller. Note that the Ho controller modifies only the least stable eigenmode of this Hz
result, without expending any extra control effort to control those eigenmodes not associated
with the maximally unstable component of the system. Note also that y = 70, marked with
the (o), is reached by reducing v until the least stable eigenvalue corresponds to one of the
uncontrollable eigenmodes in the upper branch, which cannot be moved further left; in the
present case, this corresponds to a numerical value of v = 0.26.

system

’I, . A Bz Kz €T

] —~L,Cy A+ By Ky + Ly Co z/)°
Gaussian elimination, first on the rows and then on the columns, reveals that the eigen-
values of this system are the same as the eigenvalues of the system

A+ By Ky By K,
0 A4+ Ly Co )

In other words, the eigenvalues of the closed-loop composite system for the #, problem
are simply the union of the eigenvalues of the controlled system Agx, = A+ By K» and
the eigenvalues of the estimated system Ap, = A + L, C discussed in the previous two
sections and illustrated in figure 4.

5.2. Heo control

As with the H, estimator/controller, the performance of the closed loop composite system
with the Hoo estimator/controller

T\ _ A By Ko z
.’IAJ - —Loo02 A+B2KOO+LOOCZ 2 ’
may be evaluated by considering the performance of the controlled system Axg = A+

B; K, and the performance of the estimated system A;_ = A + Lo, C; separately.
The root locus of the eigenvalues of Ax_ are plotted with respect to the parameter <y
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of the H, problem in figure 5, clearly illustrating the tendency of H., controllers to
modify only the least stable components of the system, as opposed to the #H, controller
of figure 2, which modifies all controllable modes of the system.

6. Conclusions

Optimal and robust control theories have been successfully applied to the Orr-Sommerfeld
equation. Given control on the wall-normal component of boundary velocity only, the
flow system is shown to be stabilizable but not controllable. Given measurements of wall
skin-friction only, the flow system is shown to be detectable but not observable. It is
shown that > controllers/estimators modify all of the controllable/observable modes
of the system. In contrast, the Ho, controllers modify the corresponding #, controllers
only in the most unstable component, as H,, targets a bound only on the maximum
value of the transfer function.

In the £ — 0 limit of the H3 controller, corresponding to cheap control and thus large
values of u, all eigenmodes of the closed-loop controlled system are shown to be modified
to points at which they are no longer sensitive to further modifications of the control.
Similarly, in the g3 = g2 — oo limit of the H; estimator, accounting for large disturbances
on both the state and the measurements, all eigenmodes of the closed-loop system for
the estimator error are shown to be modified to points at which they are not discernible
by flow measurements.

These results indicate that Hy controllers and estimators are optimal for their desired
purposes, but may contain large feedback gains. On the other hand, # controllers
only target the least stable components of the system, and thus have smaller feedback
gains while still achieving the same worst case performance for the nominal plant. Such
reduced feedback gains generally result in improved robustness to inaccuracies in the
system model.
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PART B.
Optimal control of turbulence

Optimal control theory is used to determine controls that effectively reduce the drag of
a turbulent flow in a plane channel. Wall transpiration (unsteady blowing/suction) with
zero net mass flux is used as the control. The technique described is unique from the
standpoint that it is mathematically based solely on the control objective, the equations
governing the fluid flow, and instantaneous observations of the flow, without the ad hoc
procedures normally used to accomplish control of complex nonlinear phenomena such
as turbulence. Drag reduction of over 50 percent is obtained using an optimal controller
in a direct numerical simulation of a turbulent channel flow at Re, = 180, which far
exceeds what has been obtained to date via adaptive and intuition-based control rules in
similar flows.

The algorithm used is computationally intensive and requires full flowfield information,
and therefore can not be implemented in a laboratory. However, these calculations allow
us to quantify the best possible system performance given a certain class of flow actuation
and qualitatively identify how optimized controllers interact with the coherent structures
of the turbulence. In so doing, an important step is made in the progression towards
practical and efficient turbulence control strategies based on optimal control techniques.

1. Introduction

The recent development of the technology necessary to produce micro-scale mechan-
canical devicest, commonly referred to as Microfabricated Electro-Mechanical Systems
(MEMS), has prompted researchers to revisit questions heretofore thought to be purely
academic. The present question is exactly of this nature: assuming that individual small-
scale turbulent fluctuations may somehow be measured and that concomitant small-scale
forcing of the turbulent fluid may somehow be attained, how much do practical engineer-
ing designs stand to benefit, where should the control be applied, and what control
algorithms are most effective? The present work attempts to cast these questions in a
rigorous framework, present a mathematical approach for their solution, and demonstrate
an effective implementation of the control algorithm in a fully-developed turbulent flow.

We first briefly summarize recent approaches to determine effective turbulence control
algorithms, categorizing these approaches to the feedback control problem by examining
their mathematical dependence on the equations governing the system. This discussion
puts the present approach in context with other techniques currently under investigation.
For a more thorough discussion along this line, see Moin & Bewley (1994).

1.1. Adaptive networks

The first class of schemes which may be proposed to achieve small scale flow control
actually makes no explicit reference to the dynamics known to take place in the flow or
the Navier-Stokes equations known to govern these dynamics. Instead, a “reasonable”
network is fashioned which takes as input those measureable flow quantities assumed to

1 For a recent review of this subject as it applies to fluid mechanics, see McMichael (1996).
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be most relevant to the control problem and produces as output the requisite control
velocity. The coefficients of this network are then “trained” by applying the control
network to the flow and gradually adjusting the coefficients in a heuristic manner based
on the resulting evolution of the flow.}

As an example of one adaptive approach, an adaptive inverse technique has been
applied by Lee et al. (1996) to a turbulent channel flow at Re, = 100, providing ap-
proximately 20 percent drag reduction. This approach first develops an approximate
“inverse” model between measurable flow quantities (as input) and the control forcing
(as output) with an adaptive technique. Each iteration of the adaptation for this inverse
model consists of three steps: 1) computing the error of the model output with respect to
the desired model output (the actual control forcing used), 2) determining the influence
of the various weights in the model on this error, then 3) updating all the weights in the
model a small amount in a manner that reduces the error. When applied to the nonlinear
adaptive networks commonly used for this purpose, known as “neural networks”, this is
commonly referred to as “back-propagation” of the error. Once the approximate inverse
model between the flow measurements and the control converges, the inverse model is
used to compute a control which will drive the flow measurements to some desired state.
In the case of Lee et al. (1996), the desired state is chosen to be a state with reduced
spanwise drag fluctuations, and the inverse model is continually trained as the flow sys-
tem evolves in time. Such on-line training of the controller helps to provide “robustness”
to possible changes in the dynamics of the flow system to be controlled.

1.2. Intuition-based approaches

In situations in which the dominant physics is well understood, judgment can guide
an engineer to design effective control schemes. Success is limited, however, by the
engineer’s understanding of the physical processes involved; in the case of turbulence,
our understanding is still limited despite several decades of intense research.

An active cancellation scheme was used by Choi, Moin, & Kim (1994), to reduce the
drag in a fully-developed turbulent flow by mitigating the effect of the near-wall vortices.
By opposing the near-wall motions of the fluid, which are caused by the near-wall vortices,
with an opposing wall control, the high shear region was lifted away from the wall. A
direct numerical simulation of this scheme applied to turbulent channel flow at Re, = 100
demonstrated 23 percent drag reduction when the control was chosen to oppose the
vertical motion at y+ = 10.

Sensing the instantaneous normal velocity at y* = 10 is, of course, very difficult.
From a practical standpoint, it is highly desirable to confine both sensing and actuation
to the wall. Thus, Choi, Moin, & Kim (1994) computed the correlation of quantities
measurable at the wall with the normal velocity above the wall. Surprisingly, the wall
pressure did not exhibit a high correlation with the normal velocity. Using a Taylor
series expansion and the equation of continuity, they obtained an expression relating the
normal velocity at a point near the wall to the instantaneous wall shear. However, using
this expression to estimate the normal velocity away from the wall resulted in only a 6
percent drag reduction. This is comparable to the drag reduction that can be achieved
with simpler, passive means such as riblets.

1 Note that the network used for this purpose can take any of several linear or nonlinear forms.
Hertz, Krogh, & Palmer (1991) contains a survey of these networks and outlines strategies for
their training,.
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1.3. Dynamical systems

The tools of dynamical systems theory have proven useful in analyzing and interpreting
turbulence dynamics (Aubry et al. 1988). Due to their large range of spatial and tempo-
ral scales, turbulent flows are known to have relatively high dimensions in this framework
even at fairly low Reynolds numbers, which makes analysis of these systems quite difficult
(Keefe, Moin, & Kim 1992). However, there has been some instructive work in represent-
ing the dynamics of coherent structures in wall-bounded flows with systems of much lower
dimension using the proper orthogonal decomposition (POD) method (Berkooz, Holmes,
& Lumley 1993). This method provides a (numerically determined) set of eigenfunctions
which are particularly efficient in representing second order turbulence statistics with a
small number of modes (perhaps as few as 10 to 20) in the cross-flow plane.

In the dynamical systems framework, the movement of the near-wall longitudinal vor-
tices when observed in a cross-flow plane may be represented locally as the orbiting of
a low dimensional state around several unstable fixed points; the passage of one set of
coherent structures leads to a rapid jump in the state to a different unstable orbit, or to
a different distribution of near-wall longitudinal vortices in the cross-flow plane. Such a
rapid transition between critical points, followed by a quiescent period in which the flow
pattern remains largely unchanged, is referred to as a heteroclinic cycle.

Coller, Holmes, & Lumley (1994a,b) consider the control of an interesting model prob-
lem governed by a simple two-component equation with similar dynamics to this model
of near-wall longitudinal vortices (i.e. attracting heteroclinic cycles) subject to random
excitation to account for unmodelled disturbances. They develop and demonstrate a
strategy which delays heteroclinic transitions in this model as long as possible by sensing
when the state is near an unstable fixed point and maintaining it there with feedback
control for as long as possible. Once the state diverges from this fixed point, presum-
ably due to the unmodelled dynamics of the flow, control is turned off until the state
approaches the neighborhood of another unstable fixed point.

1.4. Rigorous optimization of practical control algorithms—a preview

The present work is a first step towards developing practical controllers of the two types
illustrated in figure 1. The (initially undetermined) coefficients present in both con-
figurations may be optimized rigorously with approaches based on the adjoint analysis
developed in this paper, and are still under development (Bewley, Moin, & Temam 1996).

In the output feedback configuration, the flow is controlled using computationally
inexpensive direct feedback from instantaneous flow measurements. The structure of the
controller may be nonlinear and may incorporate a finite impluse response (FIR) filter
to account for information from past measurements in the control rule.

In the estimator/controller configuration, a time-evolving estimate of the flow state
near the wall is first developed, effectively accumulating the information reflected by the
stream of measurements from a few noisy sensors. The flow is then controlled with a
(possibly nonlinear) control rule based on this flow estimate. The estimation problem
and the control problem become linked when they are optimized in the presence of a
small component of “worst case” noise which maximally aggrevates the coupled system.
Such an approach is well developed for linear problems, and is referred to as Ho control;
Doyle et al. (1989) presents a compact form of this approach which makes it straight-
forward to apply to linear problems, as illustrated in Bewley, Agarwal, & Liu (1996) for
the control of the linear stages of transition. Methods to extend this “robust” approach
to nonlinear problems are still under analysis.
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FIGure 1. Examples of practical control configurations based on a few noisy flow measurements.
Both closed-loop configurations may be optimized with techniques based on the approach de-
veloped in this paper, and are still under development.

2. Governing equations

The flow problem we will consider is fully-developed turbulent channel flow with no-slip
walls and wall-normal velocity boundary conditions @ applied as the control. Though
this is an idealized geometry, it will give insight into the turbulent behavior which can
later be exploited in more practical configurations, such as the control of a spatially
developing boundary layer with discrete wall-mounted actuators. The present problem
is governed by the unsteady, incompressible Navier-Stokes equation and the continuity
equation inside the domain £ and wall-normal velocity boundary conditions on the walls
8Qy. On the remainder of the boundary of the three-dimensional volume 2, denoted
895, periodic boundary conditions are applied. The extent of the computational domain
is chosen to be large enough in the wall-parallel directions that the convenient (though
non-physical) periodic boundary conditions on 99 have no effect on the nature of the
near-wall turbulence, as illustrated qualitatively in figure 2.

The governing equations may be written functionally as

NU)=0 in (2.1a)
with boundary conditions

u; = Pn; on (2.1b)
and prescribed initial conditions

u; = u;(0) at t =0. (2.1¢)

For clarity, all differential equations will be written in operator form in this discussion,
with these operators defined when first introduced. The (nonlinear) Navier-Stokes op-
erator for the present case, in which the flow is assumed to have uniform density and
viscosity, is given by

Ou; + Ou; u; 1 0p + 15 P
U — v+ = =61 P,
at 7 0z, 6.1;? poOx; p !

Ny = Ou;
ouj

Oz
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In this discussion, z; is the streamwise direction, x5 is the wall-normal direction, z3
1s the spanwise direction, the u;’s are the corresponding velocities, p is the pressure,
p is the density, p is the absolute viscocity, and v = u/p is the kinematic viscocity.
The flow is sustained by a mean pressure gradient P, in the streamise direction, which is
modified at each time step in order to maintain a constant mass flux through the channel.
Define also n as a wall-normal unit vector directed into the channel, 7, = p 0uy /0n|wan
as the mean skin friction on the wall for the uncontrolled channel (averaged in space
and time), ur = (7/p)'/? as the mean friction velocity, § as the channel half-width,
and Re, = u,6/v as the Reynolds number based on the mean friction velocity and the
channel half width. The flow considered in this work is taken at Re, = 180. All velocities
are normalized by the friction velocity u,, and therefore may also be marked with a ()
superscript. All lengths are normalized by § unless marked with a (T) superscript, in
which case they are normalized by the wall unit v/u,. All times are normalized by §/u,
unless marked with a (*) superscript, in which case they are normalized by v/u%. Note
that, with this normalization, v = 1/Re, in the above equation for M(U).

Three state vectors are used in this work: the flow U, the flow perturbation U’, and
the adjoint U*:

U= ui(z1, T2, T3, 1) = ui(z1, e, T3, t) o= u¥(zy,T2,23,t) .
p($1>z2,$3,t) pl ('7717'7"27'7;3>t) P (.’I;l,.'L'g,.’l:3,t)
Note that each of these vector fields is composed of three velocity components and a pres-
sure component. The motivation for introducing U’ and U* will be apparent in the deriva-
tion of the control equations to follow, and the parital differential equations governing
these fields will be derived. Only after the control problem has been derived in differential
form is it discretized in space and time. For the current three-dimensional nonlinear prob-
lem, this approach is found to yield systems of equations which are easiest to understand
and to code. Note that for simpler systems of equations, such as the one-dimensional
linear problem of transition control examined in Bewley, Agarwal, & Liu (1996), the ma-

trix control equations derived from the discrete form of the governing equations is found
to be tractable.

3. Analysis of control problem

The base turbulent flow analyzed in this problem is illustrated in figure 2. This flow
has been carefully studied by Kim, Moin, & Moser (1987); the present simulations yield
essentially the same second order statistics as the results presented there for the un-
controlled flow, though the numerical method used in the present work is substantially
different in order to better facilitate wall-normal velocity boundary conditions.

As direct numerical simulations of turbulence produce a tremendous amount of data, it
is important to analyze relevant statistics of these flowfields in order to better understand
the phenomena taking place in an integrated sense and how these integral measures of the
turbulence are modified by the addition of control. The statistics used to examine the tur-
bulent flowfields in the present work are the mean velocity up, the root-mean-square ve-
locity fluctuations u; rms, the Reynolds stress —ujuz, the total stress —ujus +v uy /0z2,
and the two-point correlations R;;(r) = u;(x)u;(x + r) and their Fourier transform, the
cospectra E;;(k). Note that the overbar (7) implies averages in the homogeneous direc-
tions z; and z3 and, when appropriate, time. The statistics are functions of the nonho-
mogeneous direction zz. A further discussion of these statistics and their behaviour in a
turbulent channel at Re, = 180 may be found in Kim, Moin, & Moser (1987).
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(a) Three-dimensional visualization. For clarity, discriminant is marked only in the
lower half of the domain. Flow is from left to right, walls are shaded.
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(b) Crossflow visualization. For clarity, crossflow velocity vectors (indicated by the ar-
rows) are marked on only one ninth of the gridpoints used in the computation.

FIGURE 2. Turbulent channel flow realization at Re, = 180, no control. Regions of the flow with
positive discriminant D > Dipreshola are shaded, indicating fluid motion which, in a pointwise
sense, is vortical in nature, as suggested by Blackburn, Mansour, & Cantwell (1996). Small
amounts of blowing and suction will be applied through the computational equivalent of closely
spaced holes drilled in the walls in response to these turbulent motions in a manner which
reduces drag.

The nature of the turbulent motion is also well characterized by observing the fluid at
various points throughout the channel in a reference frame which moves with the local
velocity. In this reference frame, the point under consideration is a critical point, as the
local streamline slope is indeterminate. Thus, a critical point analysis of the type dis-
cussed by Perry & Chong (1987) is appropriate. Chong, Perry, & Cantwell (1990) and
Blackburn, Mansour, & Cantwell (1996) have demonstrated that a single scalar quantity
D, the discriminant of the velocity gradient tensor, provides a useful identification of re-
gions in the flow which, in this context, are “focus” in nature. Such focus regions roughly
correspond to “vortex-type” regions in a turbulent flowfield, though this description is
only pointwise in nature.}

The velocity gradient tensor discussed in this work is defined in wall units A;; =
auf/a'ﬂ;'. The second and third invariants of 4 are @ = {[tr(A)]? — tr(4%)} /2 and R =
—det(A). The discriminant of the velocity gradient tensor is given by D = (27/4)R*+Q?*.
Regions with D > 0 are characterized by a velocity gradient tensor with one real and two
complex eigenvalues (and thus a swirling, vortex-type motion in a Lagrangian reference
frame), whereas regions with D < 0 are characterized by three real eigenvalues. For
clarity, the visualizations of the discriminant presented in this work identify only regions

1 Note that this description of a “vortex” is by no means unique. Robinson (1991) and
Bernard, Thomas, & Handler (1993) discuss other vortex identification techniques.
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of positive discriminant greater than a small threshold value D > Dipreshold, Where
Dthreshold = 10_5-

4. Summary of optimal control theory
4.1. Cost functional

The first step in solving an optimal control problem is to represent the control problem
of interest as a cost functional, J, to be minimized. In the present problem, control is
to be applied to minimize the drag averaged over a section of wall with area A and over
the time period (0,T7] using the least amount of control effort possible. A relevant cost
functional for the present problem is thus

1 T/ 2 Ouy

The first term in the integrand is a measure of the magnitude of the control. The second
term is a measure of exactly that quantity we would like to regulate: in this case, the
drag. These quantities are integrated over the wall section under consideration, of area A,
and over the time period under consideration, of duration T'. Finally, they are weighted
together with a factor ¢2/2, which represents the price of the control. This quantity is
small if the control is “cheap” (which reduces the significance of the first term), and large
if applying control is “expensive”.

4.2. Gradient of cost functional

As suggested by Abergel and Temam (1990), a rigorous procedure may be developed to
determine the sensitivity of a cost functional 7 to small modifications of the control &
for nonlinear problems of this sort. To do this, consider the perturbation to the cost
functional resulting from a small perturbation to the control @ in the direction ®'. (Note
that this control perturbation direction @’ is arbitrary and scaled to have unit norm.)
Define J' as the Fréchet differential (Vainberg 1964) of the cost functional such that

s J(@+ed) - J(®) _ T97(%)_,
J' = lim :/w/0 —@q} P dtdS.

e—0 €

The quantity J' is the cost functional perturbation due to a control perturbation e®’
scaled by the inverse of the control perturbation magnitude € in the limit that e — 0. The
above relation, considered for arbitrary @', also defines the gradient of the cost functional
J with respect to the control @, which is written 2J(®)/ 2.

In the present approach, the cost functional perturbation 7' defined above is expressed
as a simple linear function of the direction of the control perturbation ® through the
solution of an adjoint problem. By the above formula, such a representation reveals the
gradient direction 2.7(®)/%2® directly. With this gradient information, the control &
is updated on (0,7 in the direction that, at least locally (i.e. for infinitesimal control
updates), most effectively reduces the cost functional. The finite distance the control
is updated in this direction is then found by a line search routine, which makes this
iteration procedure very robust even when controlling nonlinear phenomena. The flow
resulting from the modified control is then computed according to the (nonlinear) Navier-
Stokes equation (1.1), the sensitivity of this new flow to further control modification is
computed, and the process repeated. Upon convergence of this iteration, the flow is
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advanced over the interval (0,7}], where T; < T, and an iteration for the optimal control
over a new time interval (T}, 77 + 7] begins anew.}

The cost functional perturbation J' resulting from a control perturbation in the di-
rection ®' is given by

! ng(@) I 1 T 2 ! 6“’/1
J(@)—/w/o 7% @dtds_ﬁ/w/o (f P +u-5;> dtdSs, 1)

where u] is the Fréchet differential of u;, as defined in the following subsection. Adjoint
calculus is used simply to re-express the integral involving u} as a linear function of &'.
Once this is accomplished, ®' is factored out of the integrands and, as the equation holds
for arbitrary @', an expression for the gradient 2.J(®)/2® is extracted.

4.2.1. Perturbation field
Define U’ as the Fréchet differential of U such that
U@+ ed') - U(D)

U' = lim ,
-0 €

The quantity U’ is the flow perturbation due to a control perturbation e®’ scaled by the
inverse of the control perturbation magnitude € in the limit that ¢ = 0. The equations
governing the dependence of the flow perturbation U’ on the direction of the control
perturbation ® may be found by taking the Fréchet differential of the state equation
(1.1) itself. The result is

N'U' =0, in Q (4.2a)
with boundary conditions

ur = &' n; on 9§ (4.2b)
and initial conditions

u; =0 at t =0, (4.2¢)

where the differential Navier-Stokes operator N’ is given by

oul oul Ou; &%ul 10
.__l.i_u._l_l_u’.——-—-—y L —
ot J Ot; I 9z 3:1:? p Oz;
N'U' = . (4.3)
1 au;-
14 aﬂ:j

Note that the operation N’ U’ is linear in the perturbation field U’, though the operator
N itself is a function of the solution U of the Navier-Stokes problem. Equation (4.2)
reflects the linear dependence of the perturbation field U’ in the interior of the domain

1 Note that the flow may be advanced over a time interval which is shorter than the complete
interval over which the optimization was performed. The rationale for such an approach is that
the controls computed near the end of each optimization interval are computed without regard
to the (inevitable) further development of the flow beyond the end of the optimization interval.
Thus, the controls near the end of the optimization interval are not as effective in the long run as
those controls near the beginning of the interval, which are optimized with greater “foresight”
about the flow development. Thus, the controls optimized near the end of one interval may
be improved upon (in terms of the long-term performance) by recalculation in the following
interval.
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on the direction of the control perturbation ® at the boundary. However, the implicit
linear relationship U’ = U’(®’) given by these equations is not tractable for expressing
J' in a form from which 2J(®)/%® may be deduced. For the purpose of determining
a more useful relationship with which we may express J' in the desired form, we now
appeal to an adjoint identity.

4.2.2. Derivation of adjoint identity

This subsection derives the adjoint of the linear partial differential operator N’.
Define an inner product over the domain in space-time under consideration such that

T
(U',U*) =// U'-U*dtdv,
QJo

and consider the identity

(N'U', U*) = (U, N"U*) + b. (4.4)

Integration by parts may be used to move all differential operations from U’ on the left
hand side of the equation to U* on the right hand side, resulting in the definition of the
adjoint operator

Ou} (auf + 8'(1}‘) azuf " 1 9p*
- U\ T ) TV T oo
N*U* = ot Ox;  Oz; | Oz} p Ox; ’ (4.5)
1 3uj
P 6.’1,‘]'

where the operator N'* is a function of U, and an expression for b, which contains all the
boundary terms:

T !
ou: ou? 1
b= —nj | ujuiui + ~’~’f‘—u( Lot — *)+—("«f_a ) dtds
AL n; (u]ulut Ui Uj Uj 6.1;]- U; ulamj ppu] u; p

+/ uyul dV —/ uiuf dV
Q =T Jao

The identity (4.4) is very powerful; in fact, simplification of this identity by interior
equations, boundary conditions, and initial conditions on U, U’, and U* provides an
expression which recasts J' in a form from which 2J(®)/2® may be deduced, as
illustrated in the following two subsections.

t=0 ‘

4.2.3. Definition of adjoint field
Consider an adjoint state defined (as yet, arbitrarily) by

N*U* =0, in (4.6a)
with boundary conditions

ul = 651 on 9% (4.6b)
and initial conditions

u; =0 at t =T, (4.6¢)

where the adjoint operator AN'* is given in (4.5). Note that the adjoint problem (1.2),
though linear, has complexity similar to that of the Navier-Stokes problem (1.1). Note
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also that the “initial” conditions in (4.6c) are defined at ¢ = T. With this definition,
the adjoint field must be marched backward in time over the interval—due to the sign
of the time derivative and viscous terms in the adjoint operator N'* in (4.5), this is the
natural direction for this time march. However, as the operator N* is a function of U,
computation of the adjoint field U* requires storage of the flow field U on t € [0, T], which
itself must be computed with a forward march. This storage issue presents a numerical
complication which precludes solution for large optimization invervals T'. However, the
problem is not insurmountable for moderate values of T'.

Equation (1.2) is, as yet, simply a definition of an adjoint field. The motivation for
considering an adjoint field so defined is revealed in the following subsection.

4.2.4. Identification of gradient

The identity (4.4) is now simplified using the equations defining the state field (1.1),
the perturbation field (4.2), and the adjoint field (1.2). Due to the judicious choice of
RHS forcing terms in the equations (1.2a)-(4.6¢c) defining the adjoint field, the identity

reduces to
T 1] T
duy / / ,
—dtdS = — *®' dtdS.
/1:1\/0 # an wJ0 P

Using this equation, the cost functional perturbation J' in (4.1) may be conveniently

rewritten as
T
95((}) 2 !
— P * dtdsS = 0.
/w/o ( 5% +p* )@ S=0

As &' is arbitrary, this implies that
27 (@)
2%

Thus, the desired gradient is found to be a function of the solution of the adjoint problem
(1.2) discussed in §4.2.3.

=023 - p* 4.7)

4.3. Gradient update to control
4.3.1. Simple gradient

A control strategy using a simple gradient (also known as steepest descent) algorithm
may now be proposed such that

N _@ j(q)k—l)

2%
over the entire time interval ¢ € (0, 7], where k indicates the iteration number and « is
a parameter of descent which governs how large an update is made, which is adjusted
at each iteration step to be that value which minimizes J. This algorithm updates ¢
at each iteration in the direction of maximum decrease of J. As k — oo, the algorithm
should converge to some local minimum of J over the domain of the control @ on the
time interval ¢ € (0,7]. Note that convergence to a global minimum will not in general
be attained by such a scheme, and that, as time proceeds, J will not necessarily decrease.

P = pFt - (4.8)

4.3.2. Conjugate gradient

The simple gradient approach described above is straightforward, but, as illustrated
in figure 3, not always efficient. Even in linear problems, for cases in which the cost
functional has a long, narrow “valley”, the lack of a momentum term from iteration to
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iteration tends to cause the simple gradient algorithm to bounce from one side of the
valley to the other without turning to proceed along the valley floor. The conjugate
gradient approach tends to improve this behaviour, and will be examined further in
future work.

5. Numerical approach
5.1. Numerical algorithm for solution of flow and adjoint equations

The control formulations derived above were tested in direct numerical simulations of
fully developed turbulent channel flows at Re, = 180. Fourier transforms are used to
compute spatial derivatives in the homogeneous directions with 3/2 dealiasing on the
nonlinear terms, and a conservative second-order finite difference scheme is used to com-
pute spatial derivatives in the wall-normal direction. For the present simulations, the
number of Fourier modes used is 170 x 129 x 170 in the z;, x2, and z3 directions respec-
tively (i.e. 256 x 129 x 256 dealiased collocation points), and the size of the computational
domain in wall units is L} = 2260, L] = 360, L7 = 1130. The resulting effective grid
resolution in the streamwise and spanwise directions (on collocation points determined
without the extra 3/2 padding) is Az] = 13, Az = 7. Hyperbolic tangent streching of
the grid is used in the wall-normal direction, resulting in a grid spacing of Az} = 0.3
adjacent to the wall and Az} = 5 in the center of the channel. Fine grid resolution is
required near the wall to resolve the shear layer; the mesh is fine in this direction even up
to the center of the domain because the second order difference scheme used to compute
the derivatives in this direction is numerically dissipative. The computational grid is
staggered in the wall-normal direction to prevent decoupling of the even and odd modes
of the pressure.

The flow is advanced in time using an explicit low-storage third-order Runge-Kutta
method for terms involving z; and z3 derivatives and an implicit Crank-Nicholson
method at each Runge-Kutta substep for z, derivative terms. A temporal discretiza-
tion implicit in the z, derivatives is necessary to mitigate the CFL time step restriction
when control is applied, as the control fluid at the wall is directed in the x5 direction,
which is precisely the region and direction in which the mesh must be refined most to
resolve the shear layer.

The adjoint solver is coded with a method analogous to that of the flow solver. The
flow field is stored every 5 time steps on the forward sweep, with linear interpolation of
these stored fields used on the backward sweep to determine the operator N*. In the
optimal calculations presented here, we chose £ = 1072 (control power is taken to be
“cheap”). The Polak-Ribiere variant of the conjugate gradient algorithm was used for
the control update, with a computed at each iteration by Brent’s method, a robust line
minimization algorithm taken from Press et al. (1986).

6. Performance of controlled systems

At the time this document went to press, high Reynolds number computational results
were not yet available. They will appear in the version of this paper that gets submitted
to J. Fluid Mech. Instead, shown here are some of the visualizations and statistics from
the baseline case (no control) which was run in order validate the code and illustrate the
post processing analysis to be performed.

Figure 6 demonstrates that effective performance, including about 50% drag reduction
and nearly an order of magnitude reduction in the turbulent kinetic energy, have been
obtained in Re, = 100 turbulent flow.
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(b) History of turbulent kinetic energy.
FIGURE 5. Performance of optimal control algorithm at Re, = 100: ---- , optimal
drag formulation (§4); —— , optimal energy formulation; —-—/, intuition based scheme
® = —uz(yt =10); -+ , no control (both turbulent and laminar drag curves are shown).
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PART C.
Robust control of turbulence

The framework for applying optimal and robust control theories to linear problems
is first reviewed in a notation fairly consistent with that used by Doyle et al. (1989).
The discussion i1s made strictly in the time domain, not the frequency domain often
used to discuss these approaches, to facilitate extension of the approaches to nonlinear
problems in which frequency domain techniques are of limited usefulness. The resulting
development is fairly straightforward and does not assume the reader is accustomed to
the language of control theory.

Nonlinear optimal control problems are then reviewed in a similar notation—the ap-
proach described here is that taken by Bewley, Moin, and Temam (1997) for the optimal
control of wall-bounded turbulent flows. Finally, the concepts of robust control are ex-
tended to nonlinear problems, such as the control of turbulence, in a consistent manner.

1. Outline of linear regulation problems
1.1. Optimal regulation of linear problems
1.1.1. State equation

Consider a state vector u which is a function of some feedback control vector ® such
that it obeys the linear evolution equation

[u=Au+ B, 3| (1.1a)

with given initial conditions

u = u(0) at t = 0. (1.1b)

The matrices A and B, may be functions of time but do not themselves depend on the
state u or the control ®.

1.1.2. Cost function

The object of applying control in the present problem is to regulate some measure of
the state to zero quickly without applying excessive amounts of control. Mathematically,
this objective is expressed as the minimization of a cost functional which balances a
measure of the state u with a measure of the control & applied. We will use the norm
symbol to denote these measures, which may be defined appropriately for particular
problems of interest:

1 T

7=37 ),

(Ilal? + €2 |2]?) dt.

Note that the two terms are weighted together with a factor £2 which accounts for the
“price” of the control; this factor is large if applying the control is “expensive”, which
emphasizes the importance of the latter term in this equation and generally results in
a modest control effort, and small if applying the control is “cheap”, which results in a
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larger control effort. These terms are then averaged over some optimization interval of
consideration [0,T]. In matrix form, J; is expressed as

1 T

=37 |, (u'CfCiu+ 22" @) dt

T2

with C; defined appropriately based on the definition of the norm of the state |{u|| and
the star (*) denoting the conjugate transpose. By appropriate scaling of the vector ®
and the matrix By, the norm of the control ||®|| is taken simply as the Euclidian norm
without loss of generality.

A technique to design a feedback control relationship of the form & = K3 u which
minimizes the cost function J is now briefly outlined.

1.1.3. Adjoint equation
Define an adjoint state (as yet, arbitrarily) by the relation

A= A" A+ Cf Ciu (1.2a)
with initial conditions

A=0 att="1T. (1.2b)

Note that the “initial” conditions (1.2b) are defined at ¢ = T, so to determine the
adjoint on the interval [0,7T'), the evolution equation (1.2a) must be marched backwards
from T — 0.

1.1.4. Gradient of cost function Jo with respect to control ®

It may be shown that the gradient of the cost with respect to the control is a simple
function of the adjoint state defined by (1.2):

DT>

5% =0*®+ B; A\ (1.3)

1.1.5. Solution of control problem
By (1.3), the most suitable control which results in

DT> _ ..
73 =0 (minimum) (1.4)

as a function of the adjoint state is given simply by
1 *
P = —g_zBZ A (1.5)

Combining the state equation (1.1a), the adjoint equation (1.2a), and the control given
by (1.5) into a combined matrix form gives

u u

- 3 @9
Now prescribe a relationship between any state vector u = u(¢) and the corresponding
adjoint A = A(t) such that

1 *
A —5BB;

—Crey —A

A= X,u, (1.7)
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where X2 = X»(t). Inserting this expression into (1.6) to eliminate A and combining the
top and bottom rows to eliminate 1 leads to the expression

: 1
(~X2=A*X2+X2A—X2£—2B2B§Xz+C{‘Cl)u

As this expression is valid for any state vector u, we arrive at a Riccati equation for the
matrix X, (t):

. 1
—XzZA*X2+X2A—X2Z—2B2B;X2+CTC1 (18&)

with initial conditions, due to (1.2b) and (1.7), given by
Xy =0 at t =T, (1.8b)

Combining (1.5) and (1.7), the optimal control ® as a function of the state u is given by
the state feedback relationship

1
P = KZ u where Kz = —£—2 B; X2 (19)

where X, (t) is the solution of (1.8) and thus Ky = K»(¢).

1.1.6. Infinite time horizon for time invariant problems

If the matrices A, By, and C; are time invariant, then in the limit of large optimization
intervals T — oo the matrix X»(¢) defined by (1.8) approaches a steady state value in
the march from the initial conditions defined at ¢ = T back towards ¢ = 0. This steady
state value may be found by setting X, = 0 in (1.8a), which leads to

1
0=A"Xo+Xo A= Xy 55 By B; Xz + Ci Gy (1.10)

The optimum feedback relationship given by (1.9) in this limit is thus time invariant and
a function of the solution to (1.10), referred to as an algebraic Riccati equation (ARE).
Solution methods for equations of this type are well developed (Laub 1991).

1.2. Simple interpretation of the adjoint field

In the preceding discussion, the determination of optimal feedback control relationship
® = K,u in (1.9) was closely linked to the definition of an adjoint A in (1.2). However,
the definition of A was made arbitrarily in (1.2), and subsequently justified only mathe-
matically in (1.3) as being that field which is required to express the gradient of the cost
function with respect to the control 2.7,/%2® in a simple manner.
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In the case that the control ® enters the state equation {1.1) through the identity
matrix, By = I, a simple interpretation of the adjoint is now clear. In this case, the
expression for the gradient (1.3) reduces to

DT>
2%

Thus, the gradient consists of two terms. The first term simply accounts for the term
in the cost function J which measures the magnitude of the control; in the absense of
other term in the cost function, this term would drive the control to zero when [J; is
minimized.

The second term in (1.11) accounts for the term in the cost function J, which measures
the state u itself. Thus, one interpretation of the adjoint A is simply that: The adjoint,
when properly defined, is a measure of the sensitivity of the term of the cost function
which measures the state u to additional RHS forcing of the state equation. Note that
there are exactly as many components of the adjoint A as there are components of the
state equation (1.1a).

=23+ (1.11)

1.3. Robust regulation of linear problems
1.3.1. State equation

Consider the linear state equation of (1.1) with additional forcing due to an external
disturbance x

[0=Au+ Bix+ B, 3| (1.12a)

with given initial conditions
u = u(0) at t =0. (1.12b)

The matrix B; may be a function of time but does not itself depend on the state u or
the control &.

1.3.2. Cost function

The object of applying control in the robust problem is identical to the optimal prob-
lem, except we now play the “devil’s advocate” and seek to find the best control in the
presence of a “small” component of exactly that disturbance x which is maximally ag-
grevating to the control objective. To represent this concept mathematically, we append
to the cost function discussed in the previous section a term which accounts for the
magnitude of the disturbance used to aggrevate the system

T
T =5 [l + £ 1917 = ) .
0
Note that the sign of the term which is used to account for the disturbance is opposite
to the sign used to account for the control; this is because we minimize with respect
the control ® while simultaneously we mazimize with respect to the disturbance x. The
term involving —v? ||x||? limits the magnitude of the disturbance in the maximization
with respect to x as the term involving ¢2 ||®||? limits the magnitude of the control in
the minimization with respect to ®. In matrix form, J is expressed as

1 T

=— [ (WCICiu+l @ ®—7"x"x) dt
2T J,

N
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By appropriate scaling of the vector x and the matrix B, the norm of the disturbance
[lx|] is taken simply as the Euclidian norm without loss of generality.

A technique to design a feedback control relationship of the form & = K. u which
minimizes the cost function J in the presence of a small component, of the worst external
disturbance x forcing the state equation (1.12) is now briefly outlined. By designing a
feedback control rule effective for a state disturbed in this manner, the control rule which
is found is effective in the presence of small disturbances of any type, and has nearly the
same nominal performance (i.e. performance on the undisturbed system) as the optimal
controller determined in the previous section.

1.3.3. Adjoint equation
Define an adjoint state as for the optimal control case by the relation
“A=A"A+C! Ciu (1.13a)
with initial conditions

A=0 att=T. (1.13b)

1.3.4. Gradients of cost function J with respect to control & and disturbance x

In a manner identical to the derivation leading to (1.3), the gradient of the cost with
respect to the control @ and the disturbance x in this problem are simple functions of
the adjoint state defined by (1.13):

DI DI

%=L’2<I>+B;A and T =—v*x+ Bf A\ (1.14)

1.3.5. Solution of control problem
By (1.14), the most suitable control and disturbance which result in

N DI

70 = 0 (minimum) and T =0 (maximum) (1.15)
are given simply by
1 * 1 *
<I>=—e—2BZ,/\ and X=?B1 A (1.18)

Combining the state equation (1.12a) and the adjoint equation (1.13a) with the control
and disturbance given by (1.16) into a combined matrix form gives

(1.17)

i 1 * 1 *
A v

o _a A

Now prescribe a relationship between any state vector u and the corresponding adjoint
A such that

A= Xou (1.18)

Inserting this expression into (1.17) to eliminate A and combining the top and bottom
rows to eliminate 1 leads to the expression

. 1 1
[—XOO=A*XOO+XOOA+XOO (—2-313{—1!—2323;> Xoo+c;cl] u
v
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As this expression is valid for any state vector u, we arrive at a Riccati equation for the
matrix Xoo(¢):

. 1 1
— X =A" X+ X A+ Xoo (?BIB;—E—ZBZB%() Xoo—l'-CfCl
v (1.19a)
with initial conditions, due to (1.13b) and (1.18), given by
Xoo =0 att=T. (1.19b)

Combining (1.16) and (1.18), a robust control ® which is effective even in the presence
of a small component of the worst case disturbance x is given by the state feedback
relationship

1
d=K,u where Ko = ~ B; X (1.20)

where X, is the solution of (1.19) and thus Ko = Koo(t).

1.3.6. Infinite time horizon for time invariant problems

If the matrices A, By, By, and C; are time invariant, then in the limit that the
optimization interval T — oo the matrix X (t) defined by (1.19) approaches a steady
state value in the march from the initial conditions defined at ¢ = T' back towards ¢ = 0,
and is given by the solution to

* 1 * 1 * *
0=A"Xoo+ X A+ X (?BlBlvzz—Bsz> Xoo+C1 C

(1.21)

The robust feedback relationship given by (1.20) in this limit is thus time invariant and
a function of the solution to (1.21).

2. Outline of nonlinear regulation problems
2.1. Optimal regulation of nonlinear problems
2.1.1. State equation

Consider a state vector u which is a function of some feedback control vector ® such
that it obeys the nonlinear evolution equation

|a=Au) + B, () ] (2.1a)

with given initial conditions
u = u(0) at £t =0. (2.1b)
The nonlinear functions A(u) and B;(®) may themselves be functions of time.

2.1.2. Cost function

The object of applying control in the present case is identical to the optimal linear reg-
ulation problem described in §1.1.2. Mathematically, it is expressed as the minimization
of

T
@E%/(MQQM%WQﬁ (2.2)
0
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A technique to determine the control @ on the interval (0, 7] which (locally) minimizes
the cost function J, for the nonlinear state equation (2.1) is now briefly outlined.

2.1.3. Perturbation equation

Consider the linear problem of a small perturbation (',u’) to some reference solution
(®,u) of the system given by (2.1). It is easily shown that such a perturbation must
obey a linear evolution equation of the form

&' = Au' + B, 9| (2.3a)

with initial conditions

u =0 at t =0. (2.3b)
The matrices A and B, are functions of time and depend explicitly on the reference

condition (&, u).

2.1.4. Adjoint equation

An adjoint system is defined based on the A matrix of the perturbation problem (2.3)
such that

~A=A"A+C!Ciu (2.4a)
with initial conditions
A=0 att="T. (2.4b)

2.1.5. Gradient of cost function J5 with respect to control ®

As in the linear case, the gradient of the cost with respect to the control is a simple
function of the adjoint state defined by (2.4):

DT,
D

=03+ B;\ (2.5)

2.1.6. Solution of control problem

The most suitable control on (0, 7] which results in

DT>
2%
may not be found simply by setting the gradient 27,/ 2® in (2.5) equal to zero, as this
gradient information is accurate only in a small neighborhood of the reference solution

upon which the matrices A and B; were based.} Instead, a more stable iterative approach
is used based on the gradient vector:

=0 (minimum) (2.6)

; 27
B+l _ gk 2
T e
where k indicates the iteration index. Thus, the condition (2.6) is approached iteratively
according to the following procedure:

(2.7)

1 One may propose a Newton-Raphson technique to determine the control, setting the local
expression for 272/2%® in (2.5) equal to zero to determine a new control, determining a new
reference condition from (2.1), examining the new perturbation problem to determine a new
expression for 27,/2®, and iterating until convergence. However, such a technique is not
recommended, as there is no way to insure that the initial reference condition is sufficiently
close to a minimum to guarantee convergence of this approach.
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(@) Initialize control @ on (0,7] to @ = 0.

(b) Determine state u on (0,7] from state equation (2.1).

(¢) Determine adjoint A on [0,7") from adjoint equation (2.4).

(d) Determine local expression for gradient 272/ %® from (2.5).

(e) Test various different values for a in (2.7), computing the resulting state u from
(2.1) and the resulting cost J> from (2.2), and determine via a line minimization algo-
rithm that value of a which results in the smallest 7.

() Update control ® on (0,77] via (2.7) using best value of « determined in step e.

(9) Repeat from step b until convergence.

2.2. Robust requlation of nonlinear problems
2.2.1. State equation

Consider the nonlinear state equation of (2.1) with additional forcing due to an external
disturbance x

| u = A(u) + Bi(x) + B2 (®) | (2.8a)

with given initial conditions
u = u(0) at t =0. (2.8b)

The nonlinear function B;(x) may itself be a function of time.

2.2.2. Cost function

The object of applying control in the present case is identical to the robust linear reg-
ulation problem described in §1.2.2. Mathematically, it is expressed as the minimization
of a cost function J. with respect to the control & while simultaneously maximizing Jeo
with respect to the disturbance x, where

1

joozﬁ

T
/ (W Ci Cru+ 22" d —y%x* x) dt
0

A technique to determine the control & on the interval (0,7 which (locally) mini-
mizes the cost function Jo in the presence of a small component of the worst external
disturbance y forcing the state equation (2.8) is now briefly outlined.

2.2.3. Perturbation equation

Consider the linear problem of a small perturbation (®',x',u’) to some reference so-
lution (®,x,u) of the system given by (2.8). It is easily shown that such a perturbation
must obey a linear evolution equation of the form

W =Au +Bix' + B, ®| (2.9a)

with initial conditions
=0 at t =0. (2.9b)

The matrices A, B1, and B, are functions of time and depend explicitly on the reference
condition (@, y,u).
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2.2.4. Adjoint equation

An adjoint system is defined based on the A matrix of the perturbation problem (2.9)
such that

A= A" A+ Cf Ciu (2.10a)
with initial conditions
A=0 att=T. (2.10b)

2.2.5. Gradients of cost function J with respect to control & and disturbance x

As in the linear case, the gradients of the cost with respect to the control @ and the
disturbance x are simple functions of the adjoint state defined by (2.10):

N 2J

— p2 * _ 2 *
95 =0+ B A and D =—7"x+ B A (2.11)

2.2.6. Solution of control problem

The most suitable control and disturbance which result in

DI 29I

9 T =0 (maximum) (2.12)

=0 (minimum) and

may not, strictly speaking, be found simply by setting the gradients 2Jw/2® and
DJoo] Px in (2.11) equal to zero, as this gradient information is accurate only in a small
neighborhood of the reference solution upon which the matrices A, By, and B, were
based. Instead, an iterative approach is used based on the gradient vectors:

27 2.

Prtl = bk _ o= and bl — (k4 g

Iz X=Xt
where k indicates the iteration index. The iteration procedure followed is analagous to
that described in §2.1.6; in the present case, a value of a is chosen to reduce J, while
simulataneously a value of 3 is chosen to increase Jo. The min/max problem is solved
when the conditions given in (2.12) are approached.

(2.13)

2.2.7. Approzimate solution for systems of very large dimension

The min/max problem described by (2.13) is unfeasible when the state equation (2.8)
is a model of turbulent channel flow, as the state u upon which the disturbance acts in
this case, and therefore any general representation of the disturbance x itself, has a very
large dimension (O(107) at Re, = 180). Thus, instead of forcing the state equation with
a disturbance x determined by the iterative approach given in (2.13), which is guaranteed
to be stable but would present excessive computational storage requirements, we settle
on a simpler, though possibly unstable, approach for the determination of x.f To do
this, we choose the noise by setting 2J/%x in (2.11) equal to zero to determine the
the disturbance x. Taking the matrix B; as simply the identity matrix, the disturbance
determined in this fashion is proportional to the adjoint field itself

1

x=3) (2.14)

T Note that we still determine the control ® via the stable iterative approach given in (2.13).
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For sufficiently large v (i.e., sufficiently small level of noise), this is an accurate ap-
proximation of the global maximum 2Jw/%x = 0, and thus results in an accurate
approximation of the “worst case” noise. For smaller values of 7 (i.e., larger noise lev-
els), this approach can not even be guaranteed to be stable. Trial and error will indicate
for what values of 7 this approach converges.
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PART D.

Optimization of practical feedback rules
for turbulence control

A new method based on control theory for optimizing feedback control rules with the
objective of reducing drag in wall-bounded turbulent flows is presented. Both linear and
nonlinear control rules (of the type commonly used in neural networks) are considered.
These control rules relate wall measurements of skin friction and pressure to the control,
which is applied as a continuous distribution of wall-normal boundary velocity with zero
net transpiration. Though the optimization technique itself requires complete informa-
tion about the flow, and thus can only be performed computationally, it is intended that
the resulting optimized rules be scaled appropriately and used in physical boundary layer
control implementations.

Using optimal control theory, the sensitivity of some representative cost functional
to small modifications in the coeflicients of a feedback control rule are found via the
solution of an adjoint problem. With this sensitivity field, the coeflicients are iteratively
updated with a gradient algorithm until the cost functional is minimized. Given that this
optimization is performed in a representative situation, the coefficients then may be fixed
and the control rule effectively used in other flows with similar configurations, requiring
only information about the flow which can be obtained with flush-mounted sensors on
the wall.

1. Introduction

Optimal control theory applied to turbulence provides a rigorous framework to deter-
mine the gradient of a cost functional (which represents a physical problem of interest)
with respect to small modifications of the control forcing (Bewley, Temam, and Moin,
1997). With such information, combined with a gradient algorithm to update the con-
trol, very effective control distributions may be determined. Numerical simulations of
this approach in a low Reynolds number turbulent channel flow obtained a 50% drag
reduction and an order of magnitude turbulent kinetic energy reduction with small levels
of boundary velocity control. Important drawbacks of this approach, however, are 1) it
requires complete information about the turbulent fluctuations in the near-wall region,
and 2) it is extremely computationally expensive. Thus, it is impossible to apply the
optimal control approach directly in an experimental setting.

In order to arrive at a practical scheme, a method was sought to optimize control
rules which 1) require only flow information obtainable with wall-mounted sensors, and
2) are computationally inexpensive enough to apply in real time. Possible approaches
for this purpose can be divided into two broad categories: state trajectory approaches,
which attempt to drive some description of the turbulent state (or a portion thereof) in
a desired manner, and direct approaches, which bypass any description of the turbulent
state per se, but simply seek a control rule which achieves a desired effect, such as the
reduction of drag.

As an example of one state trajectory approach, an adaptive inverse technique has
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been applied to a low Reynolds number turbulent channel flow, providing approximately
18% drag reduction (Kim, 1996). This approach first develops an approximate “inverse”
model between measurable flow quantities (as input) and the control forcing (as output)
with an adaptive technique. Each iteration of the adaptation consists of three steps: 1)
computing the error of the model output with respect to the desired model output (the
actual control forcing used), 2) determining the influence of the weights in the model on
this error, then 3) updating all the weights in the model a small amount in a manner that
reduces the error. In neural networks, this is commonly referred to as “back-propagation”
of the error. Once this approximate inverse model between the flow measurements and
the control converges, the inverse model is used to compute a control which will drive the
flow measurements to some desired state. In the case of Kim (1996), the desired state is
chosen to be a state with reduced spanwise drag fluctuations.

Drawbacks of the adaptive inverse approach are 1) an ad hoc desired state must be
chosen, 2) a random “dither” signal needs to be applied to the control in order for the
inverse model to have “persistently exciting” data from which to learn, which reduces
the performance of the controller, and 3) it is possible that even at statistical steady
state, due to the nonlinear nature of the Navier-Stokes equation, the weights in the
inverse model may need to continually adapt in order to represent a temporally evolving
relationship between the flow measurements and the control. Thus, if the training of the
inverse model does not converge fast enough, it will not have time to keep up with the
temporal evolution of the flow (for instance, the movement of the near-wall turbulent
coherent structures), and may not develop an accurate model between flow measurements
and the control which produces them.

Other state trajectory approaches attempt to control a more complete description of
the turbulence using a low-dimensional (10-20 mode) representation of the near-wall
coherent structures (Coller et al., 1994). In this approach, the orbit of the near wall
structures in this representation is partially stabilized, resulting in a reduced “bursting”
frequency and, presumably, reduced drag. Coller et al. (1994) showed that the frequency
of bursting events could be reduced in their model equations, but did not demonstrate
how effective such an approach would be at reducing drag when applied to a fully tur-
bulent flow.

Drawbacks of this low-dimensional representation approach include 1) an accurate
estimation of this low-dimensional state needs to be made from the measurements at
the wall, and 2) a desired ad hoc state trajectory must be chosen, which can only be
selected well if one has a detailed understanding of the cause/effect relationship of the
drag-producing phenomena in the near-wall region, which is still under debate.

Direct approaches may be proposed which bypass estimation and control of the state
trajectory altogether. In such approaches, one simply represents the control objective
mathematically as a cost functional, then attempts to find a control rule which minimizes
this functional.

The simplest direct approach is an adaptive “reinforcement learning” approach. In
such an approach, the weights of a control rule are initialized randomly and the control
rule applied to the flow. Every time a “good” result is seen (e.g., the drag is reduced),
the weights contributing most to the control at that instant are increased, and every time
a “bad” result is seen, the corresponding responsible weights are decreased.

The main drawback of this approach, however, is that this reward/punish training
algorithm is not very reliable, especially for complicated nonlinear systems, and thus the
scheme may not converge at all.

Thus, we arrive at the motivation for the current work, in which we derive a rigorous
algorithm to efficiently optimize a direct control scheme, with the goal in mind simply
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of reducing some integral measure of the control objective without the prescription of
a desired state trajectory. This approach, based on computation of the gradient of a
cost functional with respect to modification of the weights in the control rule, will be
outlined in the following sections. Numerical simulations that implement this technique
are underway.

2. Problem Statement

Our goal is to determine a relationship which takes as input the measurable flow
quantities and produces as output a control @ (the normal component of velocity at the
wall) which effectively controls the flow system. The measurable flow quantities are taken
to be the wall values of the streamwise drag p du;/0n, the pressure p, and the spanwise
drag pOus/dn, where u; are the components of the velocity, u is the viscosity, and n;
is a unit normal on each wall facing into the flow. Hence, one of the simplest (linear)
control rules which may be proposed for this purpose is

0 o
D = w; *,u,ﬂ-}—wz * D + w3 *,u—ﬁi. (2.1a)
on an

The task at hand is simply to optimize the weighting functions w, such that the control
® determined by linear relationship (2.1a) effectively controls the flow system. This
configuration is illustrated graphically in Figure 1. Note that the w, are convolution
functions, where the convolution is defined such that, for example,

d 8 )
wr *u% = /le(.f) p—é%:—(m — %) dT, (2.1b)

where T' is the portion of the (2D) boundary of the (3D) flow domain 2 over which
measurements are made (and also, we assume, the portion of the boundary over which
control is applied), and Z € T' is the variable of integration. By optimizing the convolution
functions w, (%), we take into account “nearby” flow measurements (in the direction %)
from a specific actuator location (z). In fact, the extent to which these convolution
functions are nonzero when converged will indicate how far in each direction from a
specific actuator flow measurements are relevant when computing an effective control.
Additionally, we will constrain the spatial average of each convolution function to be zero,
so that the net control on each wall is exactly zero at any instant. This is motivated both
by physical flow control devices and the current simulations which require control with
zero net mass flux. We will seek the best control rule to interact with the fluctuating
part of the turbulence only.

Note also that the weighting functions w,, are prescribed at the outset to be invariant
in time. Though the method used requires that the weights be optimized by considering
finite time horizon [0, T], we seek to approximate the steady-state weights at the “infinite
time horizon” in which turbulent fluctuations near the wall are countered by a fixed
control rule at the wall in an efficient drag-reducing manner.

As a straightforward extension to this work, one may also optimize nonlinear control
rules of a form similar to that used in neural networks, which may be written

A
&= Wig(r),

A=1
Oy ou
€)= wyn *;.r,a—n + way * p + w3 *u—é}—f— + By,

where A is the number of “nodes” in the “hidden layer” of the network and g(£,) is an
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Output = Control Velocity

duy n Ouy
aon on
Streamwise Drag Pressure Spanwise Drag

Input = Flow Measurements

FIGURE 1. Linear Network. The flow measurements which we take as inputs are localized mea-
surements on the wall of the streamwise drag, the pressure, and the spanwise drag. The flow
measurements are convolved with the weighting functions w, and summed to determine the con-
trol ®. The input flow measurements are field variables and are indicated with heavy lines—the
corresponding weights are convolution functions (in the continuous case) or two dimensional
arrays containing a stencil of weights (in the discrete case).

Output = Control Velocity

Input = Flow Measurements Bias Term

FIGURE 2. Nonlinear Network. The output of several simple networks A similar to the one
depicted in Figure 1 (with added bias weights By connected to an input clamped to unity) are
used as the arguments £x to activation functions g at the hidden nodes. The output of all of
the hidden nodes g(£») are then weighted with the Wi and summed to produce the control ®.

“activation function” which will be prescribed. Control rules of this form, used commonly
in neural networks, have seen a broad range of application and are capable of representing
very general nonlinear relationships (Hertz et al., 1991). The task at hand in this case is
to optimize the weighting functions w, and the discrete weights By and Wy such that
& effectively controls the flow system. This type of network is illustrated in Figure 2.

For simplicity, the equations necessary to optimize the linear network of equation (2.1)
and figure 1 will be derived in this paper.

3. Governing equations

The flow system we consider is fully developed turbulent channel flow with periodic
boundary conditions in the streamwise (z1) and spanwise (z3) directions, as shown in
Figure 3. Blowing and suction through the computational equivalent of holes drilled
in the wall will be applied according to the linear control rule (2.1). The control rule
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FIGURE 3. Flow configuration. Blowing and suction is applied through closely spaced holes
drilled in the walls to control the flow. This control will be coordinated with nearby flow
measurements on the wall in a manner to be determined.

optimized for this configuration should also be effective in turbulent boundary layers due
to the similar near-wall behavior of these flows.
The governing equations may be written functionally as

NU)=0 in Q (3.1a)
with boundary conditions
u; = Pny on 89y, (3.1b)

where @ is determined by the linear control rule

P \
P =w *ua—u;-+w2 *p+ ws *u%, (3.1¢)

and prescribed initial conditions

u; = u;(0) at t =0. (3.1d)

For clarity, all differential equations will be written in operator form in this discussion,
with these operators defined when first introduced. The (nonlinear) Navier-Stokes op-
erator for the present case, in which the flow is assumed to have uniform density and
viscosity, is given by

. " 2.
g L
N(U) = o T35 poz; p
Ou;
Oz;

In this discussion, z; is the streamwise direction, zo is the wall-normal direction, x3
is the spanwise direction, the u;’s are the corresponding velocities, p is the pressure,
p is the density, p is the absolute viscocity, and v = p/p is the kinematic viscocity.
The flow is sustained by a mean pressure gradient P, in the streamise direction, which is
modified at each time step in order to maintain a constant mass flux through the channel.
Define also n as a wall-normal unit vector directed into the channel, 7, = p 0u;/0n|wan
as the mean skin friction on the wall for the uncontrolled channel (averaged in space
and time), u, = (7,/p)'/? as the mean friction velocity, § as the channel half-width,
and Re, = u,d/v as the Reynolds number based on the mean friction velocity and the
channel half width. The flow considered in this work is taken at Re, = 180. All velocities
are normalized by the friction velocity u,, and therefore may also be marked with a ()
superscript. All lengths are normalized by 4 unless marked with a (*) superscript, in
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which case they are normalized by the wall unit v/u,. All times are normalized by §/u,
unless marked with a (*) superscript, in which case they are normalized by v/uZ.

We will now develop a systematic procedure to optimize the weighting functions ws.
The first step is to define the control problem of interest mathematically as a cost func-
tional to be minimized.

4. Cost functional

The objective of applying the control in this problem is to reduce the drag without
using excessive amounts of control forcing. Mathematically, a cost functional for this
problem may thus be expressed as

J(w) AT// (&“+2&)ﬁﬂ. (4.1)

The term involving pdu; /On is the drag averaged over the wall I' and the time interval
of interest [0,7]. The term involving ®? is an expression of the magnitude of the control.
These two terms are weighted together with a factor £2, which represents the price of the
control. This quantity is small if the control is “cheap”, and large if applying the control
is “expensive”.

Minimization of J corresponds to reducing drag while maintaining a small amount of
control forcing.

5. Gradient of cost functional

We now develop a technique to compute the gradient of the cost functional J with
respect to the weighting functions w.

5.1. Perturbation field

Consider first the Fréchet differential of the flow U with respect to w, which is defined
such that

U(w—i—ezb)—U(w)

/ Z 9U(w)
r

k=1

where 1 is an arbitrary “update direction” to the weighting function w. This update
direction will remain undetermined and will later be isolated and removed from the
equation for the perturbation of the cost functional caused by a perturbation to the
control. The perturbation field U is governed by the Fréchet differential of (3.1) with
respect to w, which may be written:

AU =0 in O (5.1a)
with boundary conditions

w; = dn; on 0%, (5.1b)
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where

. Oty . Jus
D =wy kp——+ wy * P+ ws *k p——r
on on

Ou, du
iy % e + Uiy % P+ U3 ke l3 (5.1¢c)
on on
and with initial conditions
i; =0 at t =0. (5.1d)

The Fréchet differential of the (non-linear) Navier-Stokes operator is given by
6*111- 3’(li . a’u,i 821},i 1 Bp

» uj'é?j‘i“"’/ié;;_ya_?:? p Oz (5.2)
= 10u; , |

pOz;

which is linear in the perturbation field U , but 1s a function of the solution U of the
Navier-Stokes problem, so that A = A(U).

The Fréchet differential of the cost functional J with respect to w is:
1 lim J(w + ew) — J{(w)

e—0 €

= ——/ Z @j(U)) ’LU
I‘ an K

// ( a'“+e2<1><1>) dtdl’

It is seen that the perturbation of the cost functional J is a function of the perturbation
of the flow U. The linear dependence of U on w may, in theory, be found directly from
(5.1). However, in practice, this is not a tractable approach due to the excessively large
dimension of the problem under consideration. Thus, we seek a simpler way to express
the above equation in a manner in which the gradient 2.7 (w)/%w,. may be determined.
It is for this reason that we now propose the definition of an adjoint field.

I

J

5.2. Definition of adjoint field

As discussed in previous sections, an adjoint operator ,A* may be defined by the identity
< AU, U >=< U, AU > +b. (5.3)

Integration by parts may be used to move all differential operations from U on the left
hand side of the equation to U on the right hand side, resulting in an expression for the
adjoint operator

3 Oul (8u 3“? ) 3 %} l@
ot O0z;  Owm; v 6.7:? p O;

1 au; ’

Y a.’l:j

A*U* = (5.4)
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where the operator A* is a function of U, and an expression for b, which contains all the
boundary terms:

T
« R o Out 1 . .
b =:/wA —n; (uj ugw +uiu;; u; — V(a.’l:j ur —u; 8:1:;) + —p—(p'u]- —u}p )) dtdS

+/u;u;‘dV —/u;u;‘dv‘ .
Q t=T Q t=0

In order to express the perturbation of the cost functional in a usable form, we now
define an adjoint state by the system of equations

AU =0, (5.5a)

with mixed boundary conditions on the walls

Gy 4+ fruwn =1+ 2%y

——'llz ng + f * '(I)z = Kz P % 21)2 (55b)
fl,g +f*'(I)3= ﬂz@*‘lbg,
where
~_ - ot
f=p—2puzus —~y,a—2
o
b(z) = b(—z),
and with initial conditions
w,=0att="T. (5.5¢)

5.3. Identification of gradient

Using the identity (5.3) and the definition of the adjoint in (5.5), we can algebraically
manipulate (5.3) to the form

3 3
1 Z 2T (w) . _1 Z = .
.A /F =1 @wm Wr dI‘ - A /I: k=1 GK o dl-‘, (5.6)

where G is some function of the solution to the adjoint problem (5.5). As 4 is arbitrary,
we may then identify the expression for G, as 2J(w)/Pw,. It may be shown that the
resulting expression for the gradient is

2T (w) 1 /T (_
.@w1 - T 0
2J(w) 1 (T ( -
== —f+4 q») «pdt
91,02 TA f p
2T(w) 1 /T ( - diig
= | (-F+ee)uat
Jw;, T/, \7TT *on
Thus, the gradient of the cost J(w) with respect to modification of the weights w of
the feedback control rule has been represented as a function of the solution of an adjoint
problem. This adjoint problem, though linear, has approximately the same complexity
as the Navier-Stokes problem itself, as can be seen by examining Equation (5.5) and the
definition of A*. Note that the adjoint field evolves backwards over the domain [0, 7]
from initial conditions at ¢ = T; this is the natural direction in time to march these
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+
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equations due to the sign of the viscous and time derivatives in A*. Note also that
the computation of the adjoint field requires the storage of the flow field over the entire
interval [0, T], as the adjoint operator depends on the flow velocity, i.e. A* = A*(U).

6. Gradient update to control

With the gradients computed using the adjoint field, a control rule may be optimized
using a gradient algorithm as done in previous sections.

7. Computational Results

At the time this document went to press, computational results were not yet available.
They will appear in the version of to be submitted to J. Fluid Mech.

8. Discussion

A new technique for optimizing linear and nonlinear feedback control rules for turbulent
flows has been presented. This technique is based solely on the equations governing
the flow and a mathematical statement of the control objective, thus bypassing the ad
hoc identification of a desired state trajectory often used to determine feedback control
rules. Also, the training is based on an adjoint (“sensitivity”) field, which determines
the gradient of the cost with respect to small modifications of the weights in a rigorous
manner. Thus, convergence can be expected to be much better than for an reinforcement
learning approach with an adaptive algorithm.

A straightforward extension of the present approach is to take into account past mea-
surements in the control rule. Past measurements, which may easily be stored in an
experimental implementation, may give additional information about the convection ve-
locity of flow structures which cannot be determined from instantaneous measurements
alone. It is also possible that such information can be determined by recurrent networks,
in which the inputs of the control network include the outputs of the network from the
previous time step.

Drawbacks of the present method include 1) an accurate mathematical model of the
flow equations and boundary conditions are needed for the training, and 2) the training
algorithm is quite complex, requiring simulation on a supercomputer. However, this
method should provide insight into effective new control rules which one could not think
of otherwise, and which can be further modified to fit practical problems. In addition,
they may be used to guide the development of experimental configurations, revealing the
necessary locations of sensors with respect to the actuators in order to obtain information
relevant to effective control strategies.
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